Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting


The growing need to store increasing amounts of renewable energy has recently triggered substantial R&D efforts towards efficient and stable water electrolysis technologies. The oxygen evolution reaction (OER) occurring at the electrolyser anode is central to the development of a clean, reliable and emission-free hydrogen economy. The development of robust and highly active anode materials for OER is therefore a great challenge and has been the main focus of research. Among potential candidates, perovskites have emerged as promising OER electrocatalysts. In this study, by combining a scalable cutting-edge synthesis method with time-resolved X-ray absorption spectroscopy measurements, we were able to capture the dynamic local electronic and geometric structure during realistic operando conditions for highly active OER perovskite nanocatalysts. Ba0.5Sr0.5Co0.8Fe0.2O3−δ as nano-powder displays unique features that allow a dynamic self-reconstruction of the material’s surface during OER, that is, the growth of a self-assembled metal oxy(hydroxide) active layer. Therefore, besides showing outstanding performance at both the laboratory and industrial scale, we provide a fundamental understanding of the operando OER mechanism for highly active perovskite catalysts. This understanding significantly differs from design principles based on ex situ characterization techniques.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Microstructure and OER activities of BSCF-FS, LSC-FS and CoO-FS.
Figure 2: Operando XANES spectra.
Figure 3: Operando EXAFS and postmortem HAADF-STEM and EDX spectroscopy of the BSCF-FS electrode.
Figure 4: Relationship between OER activity and local electronic/structural changes.
Figure 5: OER/LOER and dissolution/re-deposition mechanism leading to the formation of a self-assembled active surface layer, rich in CoO(OH) and FeO(OH).
Figure 6: Performance comparison of BSCF-FS and IrO2 anode OER catalysts under alkaline membrane water electrolyser operating conditions.


  1. 1

    Fabbri, E., Habereder, A., Waltar, K., Kotz, R. & Schmidt, T. J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 4, 3800–3821 (2014).

    CAS  Article  Google Scholar 

  2. 2

    Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Smith, R. D. L. et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Bergmann, A. et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6, 8625 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Zhang, B. et al. Homogeneously dispersed, multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    CAS  Article  Google Scholar 

  6. 6

    Vojvodic, A. & Norskov, J. K. Optimizing perovskites for the water-splitting reaction. Science 334, 1355–1356 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Seitz, L. C. et al. A highly active and stable IrO2/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    CAS  Article  Google Scholar 

  9. 9

    Mefford, J. T. et al. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 7, 11053 (2016).

    CAS  Article  Google Scholar 

  10. 10

    Han, B. et al. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution. Nat. Mater. 16, 121–126 (2017).

    CAS  Article  Google Scholar 

  11. 11

    Fabbri, E., Nachtegaal, M., Cheng, X. & Schmidt, T. J. Superior bifunctional electrocatalytic activity of Ba0.5Sr0.5Co0.8Fe0.2O3−δ/carbon composite electrodes: insight into the local electronic structure. Adv. Energy Mater. 5, 1402033–1402037 (2015).

    Article  Google Scholar 

  12. 12

    Müller, O., Nachtegaal, M., Just, J., Lutzenkirchen-Hecht, D. & Frahm, R. Quick-EXAFS setup at the SuperXAS beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution. J. Synchrotron Radiat. 23, 260–266 (2016).

    Article  Google Scholar 

  13. 13

    Heel, A., Holtappels, P., Hug, P. & Graule, T. Flame spray synthesis of nanoscale La0.6Sr0.4Co0.2Fe0.8O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ as cathode materials for intermediate temperature solid oxide fuel cells. Fuel Cells 10, 419–432 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Arnold, M., Xu, Q., Tichelaar, F. D. & Feldhoff, A. Local charge disproportion in a high-performance perovskite. Chem. Mater. 21, 635–640 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Harvey, A. S. et al. Oxidation states of Co and Fe in Ba1−xSrxCo1−yFeyO3−δ (x, y = 0.2–0.8) and oxygen desorption in the temperature range 300–1273 K. Phys. Chem. Chem. Phys. 11, 3090–3098 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Jung, J.-I. et al. Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy Environ. Sci. 9, 176–183 (2016).

    CAS  Article  Google Scholar 

  17. 17

    Tung, C. W. et al. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 6, 8106 (2015).

    CAS  Article  Google Scholar 

  18. 18

    Binninger, T. et al. Electrochemical flow-cell setup for in situ X-ray investigations: I. Cell for SAXS and XAS at synchrotron facilities. J. Electrochem. Soc. 163, H906–H912 (2016).

    CAS  Article  Google Scholar 

  19. 19

    Risch, M. et al. Structural changes of cobalt-based perovskites upon water oxidation investigated by EXAFS. J. Phys. Chem. C 117, 8628–8635 (2013).

    CAS  Article  Google Scholar 

  20. 20

    May, K. J. et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 3, 3264–3270 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Battle, P. D., Gibb, T. C. & Strange, R. A study of a new incommensurate phase in the system Srmn1-Xcoxo3-Y. J. Solid State Chem. 81, 217–229 (1989).

    CAS  Article  Google Scholar 

  22. 22

    Gibb, T. C. Evidence for an unusual phase in the perovskite-related system BaCoxMn1−XO3−Y from EXAFS spectroscopy. J. Mater. Chem. 2, 387–393 (1992).

    CAS  Article  Google Scholar 

  23. 23

    Totir, D., Mo, Y. B., Kim, S., Antonio, M. R. & Scherson, D. A. In situ CoK-edge X-ray absorption fine structure of cobalt hydroxide film electrodes in alkaline solutions. J. Electrochem. Soc. 147, 4594–4597 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Huang, J. et al. Oxyhydroxide nanosheets with highly efficient electron–hole pair separation for hydrogen evolution. Angew. Chem. Int. Ed. 55, 2137–2141 (2016).

    CAS  Article  Google Scholar 

  25. 25

    Junheng, H., Qinghua, L., Tao, Y., Zhiyun, P. & Shiqiang, W. XAFS study on structure-activity correlations of α-Co(OH) 2 nanosheets water oxidation catalysts. J. Phys. Conf. Ser. 712, 012128 (2016).

    Article  Google Scholar 

  26. 26

    Manceau, A. & Combes, J. M. Structure of Mn and Fe oxides and oxyhydroxides: a topological approach by EXAFS. Phys. Chem. Miner. 15, 283–295 (1988).

    CAS  Article  Google Scholar 

  27. 27

    Pinakidou, F., Katsikini, M., Simeonidis, K., Paloura, E. C. & Mitrakasa, M. An X-ray absorption study of synthesis- and As adsorption-induced microstructural modifications in Fe oxy-hydroxides. J. Hazard Mater. 298, 203–209 (2015).

    CAS  Article  Google Scholar 

  28. 28

    Chang, S. H. et al. Activity-stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discuss. 176, 125–133 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Chang, S. H. et al. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nat. Commun. 5, 4191 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Binninger, T. et al. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 5, 12167 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Fierro, S., Nagel, T., Baltruschat, H. & Comninellis, C. Investigation of the oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and on-line mass spectrometry. Electrochem. Commun. 9, 1969–1974 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Diaz-Morales, O., Calle-Vallejo, F., de Munck, C. & Koper, M. T. M. Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism. Chem. Sci. 4, 2334–2343 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Kotz, R., Stucki, S., Scherson, D. & Kolb, D. M. In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid-media. J. Electroanal. Chem. 172, 211–219 (1984).

    Article  Google Scholar 

  34. 34

    Danilovic, N. et al. Activity–stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 5, 2474–2478 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Cherevko, S. et al. Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6, 2219–2223 (2014).

    CAS  Article  Google Scholar 

  36. 36

    Chaumont, R., Cheng, X. & Puente Orench, I. Effect of the Oxygen Vacancies and Crystalline Structure on the Oxygen Evolution Reaction Activity of Electrocatalysts Oxides (Institut Laue-Langevin (ILL), 2016).

    Google Scholar 

  37. 37

    McIntosh, S., Vente, J. P., Haije, W. G., Blank, D. H. A. & Bouwmeester, H. J. M. Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3−d measured by in situ neutron diffraction. Chem. Mater. 18, 2187–2193 (2006).

    CAS  Article  Google Scholar 

  38. 38

    Shao, Z. et al. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3−d oxygen membrane. J. Membr. Sci. 172, 177–188 (2000).

    CAS  Article  Google Scholar 

  39. 39

    Švarcová, S., Wiik, K., Tolchard, J., Bouwmeester, H. J. M. & Grande, T. Structural instability of cubic perovskite BaxSr1−xCo1−yFeyO3−δ . Solid State Ion. 178, 1787–1791 (2008).

    Article  Google Scholar 

  40. 40

    McIntosh, S., Vente, J. P., Haije, W. G., Blank, D. H. A. & Bouwmeester, H. J. M. Structure and oxygen stoichiometry of SrCo0.8Fe0.2O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ . Solid State Ion. 177, 1737–1742 (2006).

    CAS  Article  Google Scholar 

  41. 41

    Burke, M. S., Enman, L. J., Batchellor, A. S., Zou, S. & Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549–7558 (2015).

    CAS  Article  Google Scholar 

  42. 42

    Friebel, D. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    CAS  Article  Google Scholar 

  43. 43

    Gor̈lin, M. et al. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni–Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 138, 5603–5614 (2016).

    Article  Google Scholar 

  44. 44

    Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    CAS  Article  Google Scholar 

  45. 45

    Ayers, K. E. et al. Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers. Catal. Today 262, 121–132 (2016).

    CAS  Article  Google Scholar 

  46. 46

    Zhao, S. et al. Calculating the electrochemically active surface area of iridium oxide in operating proton exchange membrane electrolyzers. J. Electrochem. Soc. 162, F1292–F1298 (2015).

    CAS  Article  Google Scholar 

  47. 47

    Berar, J. F. & Baldinozzi, G. XND code: from X-ray laboratory data to incommensurately modulated phases. Rietveld modelling of complex materials. CPD Newsletter 20, 29 (1998).

    Google Scholar 

  48. 48

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron. Radiat. 12, 537–541 (2005).

    CAS  Article  Google Scholar 

Download references


The authors gratefully acknowledge the Swiss National Science Foundation through its Ambizione Program (grant No. PZ00P2_148041 and grant No. PZ00P2_171426), the Swiss Competence Center for Energy Research (SCCER) Heat & Electricity Storage, the Swiss National Science Foundation within NCCR Marvel, and the Paul Scherrer Institute for financial contributions to this work. The authors thank I. Puente Orench from D1B/ILL/Grenoble for her assistance with the neutron diffraction experiments and R. Haumont from SP2M/ICMMO/Université Paris-sud for his help with neutron diffraction refinement. Furthermore, the authors thank the Swiss Light Source for providing beamtime at the SuperXAS beamline and ScopeM of ETH Zurich for the use of their transmission electron microscopes.

Author information




E.F., T.B. and T.J.S. developed the concept. M.N. refined the argumentation. F.B. synthesized the nanocatalysts. E.F., X.C., B.-J.K. and J.D. carried out sample physical characterizations and electrochemical measurements. E.F., M.N., J.D. and X.C. carried out the experiments at the SuperXAS beamline. M.N. guided the operando XAS measurements. R.S. helped with the TEM investigation. L.W., M.P., N.D. and K.E.A. performed and supervised the electrolyser tests. E.F., M.N., T.B. and T.J.S. discussed the results and co-wrote the paper. All of the authors have revised the manuscript.

Corresponding authors

Correspondence to Emiliana Fabbri or Thomas J. Schmidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2708 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fabbri, E., Nachtegaal, M., Binninger, T. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nature Mater 16, 925–931 (2017). https://doi.org/10.1038/nmat4938

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing