Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Valley magnetoelectricity in single-layer MoS2

Abstract

The magnetoelectric (ME) effect, the phenomenon of inducing magnetization by application of an electric field or vice versa, holds great promise for magnetic sensing and switching applications1. Studies of the ME effect have so far focused on the control of the electron spin degree of freedom (DOF) in materials such as multiferroics2 and conventional semiconductors3. Here, we report a new form of the ME effect based on the valley DOF in two-dimensional Dirac materials4,5,6. By breaking the three-fold rotational symmetry in single-layer MoS2 via a uniaxial stress, we have demonstrated the pure electrical generation of valley magnetization in this material, and its direct imaging by Kerr rotation microscopy. The observed out-of-plane magnetization is independent of in-plane magnetic field, linearly proportional to the in-plane current density, and optimized when the current is orthogonal to the strain-induced piezoelectric field. These results are fully consistent with a theoretical model of valley magnetoelectricity driven by Berry curvature effects. Furthermore, the effect persists at room temperature, opening possibilities for practical valleytronic devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Valley magnetoelectric effect in strained single-layer MoS2.
Figure 2: Valley Hall effect and valley magnetoelectric effect in single-layer MoS2.
Figure 3: Dependence on current direction of the valley magnetoelectric effect.
Figure 4: Temperature dependence of the valley magnetoelectric effect.

Similar content being viewed by others

References

  1. Manfred, F. Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005).

    Article  Google Scholar 

  2. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  3. Awschalom, D. D. & Flatte, M. E. Challenges for semiconductor spintronics. Nat. Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  4. Xiao, D., Liu, G. B., Feng, W. X., Xu, X. D. & Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

    Article  Google Scholar 

  5. Xiao, D., Yao, W. & Niu, Q. Valley-contrasting physics in graphene: magnetic moment and topological transport. Phys. Rev. Lett. 99, 236809 (2007).

    Article  Google Scholar 

  6. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  7. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    Article  CAS  Google Scholar 

  8. Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    Article  CAS  Google Scholar 

  9. Gorbachev, R. V. et al. Detecting topological currents in graphene superlattices. Science 346, 448–451 (2014).

    Article  CAS  Google Scholar 

  10. Kim, J. et al. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

    Article  CAS  Google Scholar 

  11. Sie, E. J. et al. Valley-selective optical Stark effect in monolayer WS2 . Nat. Mater. 14, 290–294 (2015).

    Article  CAS  Google Scholar 

  12. Li, Y. L. et al. Valley splitting and polarization by the Zeeman effect in monolayer MoSe2 . Phys. Rev. Lett. 113, 266804 (2014).

    Article  Google Scholar 

  13. MacNeill, D. et al. Breaking of valley degeneracy by magnetic field in monolayer MoSe2 . Phys. Rev. Lett. 114, 037401 (2015).

    Article  Google Scholar 

  14. Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2 . Nat. Phys. 11, 148–152 (2015).

    Article  CAS  Google Scholar 

  15. Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2 . Nat. Phys. 11, 141–147 (2015).

    Article  CAS  Google Scholar 

  16. Ye, Y. et al. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotech. 11, 598–602 (2016).

    Article  CAS  Google Scholar 

  17. Lee, J., Mak, K. F. & Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotech. 11, 421–425 (2016).

    Article  CAS  Google Scholar 

  18. Cracknell, A. P. Magnetism in Crystalline Materials: Applications of the Theory of Groups of Cambiant Symmetry (Pergamon Press, 1975).

    Google Scholar 

  19. Levitov, L. S., Nazarov, Y. V. & Eliashberg, G. M. Magnetoelectric effects in conductors with mirror isomer symmetry. Zh. Eksp. I Teor. Fiz. 88, 229–236 (1985).

    Google Scholar 

  20. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  Google Scholar 

  21. Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  Google Scholar 

  22. Chernyshov, A. et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 5, 656–659 (2009).

    Article  CAS  Google Scholar 

  23. Mihai Miron, I. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

    Article  CAS  Google Scholar 

  24. Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

    Article  CAS  Google Scholar 

  25. Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2 . Nat. Nanotech. 10, 151–155 (2015).

    Article  CAS  Google Scholar 

  26. He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2 . Nano Lett. 13, 2931–2936 (2013).

    Article  CAS  Google Scholar 

  27. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2 . Nano Lett. 13, 3626–3630 (2013).

    Article  CAS  Google Scholar 

  28. Yang, L. et al. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS2 and WS2 . Nat. Phys. 11, 830–834 (2015).

    Article  CAS  Google Scholar 

  29. Sallen, G. et al. Robust optical emission polarization in MoS2 monolayers through selective valley excitation. Phys. Rev. B 86, 081301 (2012).

    Article  Google Scholar 

  30. Linnik, T. L. Effective Hamiltonian of strained graphene. J. Phys. Condens. Matter 24, 205302 (2012).

    Article  CAS  Google Scholar 

  31. Rostami, H., Roldán, R., Cappelluti, E., Asgari, R. & Guinea, F. Theory of strain in single-layer transition metal dichalcogenides. Phys. Rev. B 92, 195402 (2015).

    Article  Google Scholar 

  32. Liu, G. B., Shan, W. Y., Yao, Y. G., Yao, W. & Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 88, 085433 (2013).

    Article  Google Scholar 

  33. Gurvitch, M. Ioffe–Regel criterion and resistivity of metals. Phys. Rev. B 24, 7404–7407 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge W. Shan, D. Xiao, I. Sodemann and L. Fu for fruitful discussions. The research was supported by the National Science Foundation DMR-1420451 for sample and device fabrication and the US Department of Energy, Office of Basic Energy Sciences under award no. DESC0013883 and the Air Force Office of Scientific Research under grant FA9550-14-1-0268 for optical spectroscopy measurements. Support for data analysis and modelling was provided by the Air Force Office of Scientific Research under grant FA9550-16-1-0249 (K.F.M.) and the National Science Foundation DMR-1410407 (J.S.). This work was also supported by the National Research Foundation of Korea Grant funded by the Korean government (S2017A040300024) (J.L.) and a David and Lucille Packard Fellowship and a Sloan Fellowship (K.F.M.).

Author information

Authors and Affiliations

Authors

Contributions

J.L., K.F.M. and J.S. conceived and designed the experiments, analysed the data and co-wrote the manuscript. J.L., Z.W. and H.X. fabricated the devices and performed the measurements. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Kin Fai Mak or Jie Shan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4343 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Wang, Z., Xie, H. et al. Valley magnetoelectricity in single-layer MoS2. Nature Mater 16, 887–891 (2017). https://doi.org/10.1038/nmat4931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing