Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy

Abstract

Organic–inorganic halide perovskites (OIHPs) bring an unprecedented opportunity for radiation detection with their defect-tolerance nature, large mobility–lifetime product, and simple crystal growth from solution. Here we report a dopant compensation in alloyed OIHP single crystals to overcome limitations of device noise and charge collection, enabling γ-ray spectrum collection at room temperature. CH3NH3PbBr3 and CH3NH3PbCl3 are found to be p-type and n-type doped, respectively, whereas dopant-compensated CH3NH3PbBr2.94Cl0.06 alloy has over tenfold improved bulk resistivity of 3.6 × 109 Ω cm. Alloying also increases the hole mobility to 560 cm2 V−1 s−1, yielding a high mobility–lifetime product of 1.8 × 10−2 cm2 V−1. The use of a guard ring electrode in the detector reduces the crystal surface leakage current and device dark current. A distinguishable 137Cs energy spectrum with comparable or better resolution than standard scintillator detectors is collected under a small electric field of 1.8 V mm−1 at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cl alloying for dopant compensation.
Figure 2: Cl alloying to suppress dark current.
Figure 3: Mobility and μτ product improvement.
Figure 4: Photodetector performance.
Figure 5: γ-ray detector performance.

Similar content being viewed by others

References

  1. Kasap, S. et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors 11, 5112–5157 (2011).

    Article  CAS  Google Scholar 

  2. Yamamoto, Y. & Shinohara, K. Application of X-ray microscopy in analysis of living hydrated cells. Anat. Rec. 269, 217–223 (2002).

    Article  Google Scholar 

  3. Büchele, P. et al. X-ray imaging with scintillator-sensitized hybrid organic photodetectors. Nat. Photon. 9, 843–848 (2015).

    Article  Google Scholar 

  4. Johns, P. M., Baciak, J. E. & Nino, J. C. Enhanced gamma ray sensitivity in bismuth triiodide sensors through volumetric defect control. Appl. Phys. Lett. 109, 092105 (2016).

    Article  Google Scholar 

  5. Venkataraman, R., Croft, S. & Russ, W. R. Calculation of peak-to-total ratios for high purity germanium detectors using Monte-Carlo modeling. J. Radioanal. Nucl. Chem. 264, 183–191 (2005).

    Article  CAS  Google Scholar 

  6. Szeles, C. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications. Phys. Status Solidi b 241, 783–790 (2004).

    Article  CAS  Google Scholar 

  7. Schlesinger, T. E. et al. Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. R 32, 103–189 (2001).

    Article  Google Scholar 

  8. Del Sordo, S. et al. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9, 3491–3526 (2009).

    Article  CAS  Google Scholar 

  9. Liu, M., Johnston, M. B. & Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013).

    Article  CAS  Google Scholar 

  10. Wang, Q. et al. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28, 6734–6739 (2016).

    Article  CAS  Google Scholar 

  11. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotech. 10, 391–402 (2015).

    Article  CAS  Google Scholar 

  12. Fang, Y. J. et al. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination. Nat. Photon. 9, 679–686 (2015).

    Article  CAS  Google Scholar 

  13. Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photon. 10, 585–589 (2016).

    Article  CAS  Google Scholar 

  14. Yakunin, S. et al. Detection of X-ray photons by solution-processed lead halide perovskites. Nat. Photon. 9, 444–449 (2015).

    Article  CAS  Google Scholar 

  15. Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  CAS  Google Scholar 

  16. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    Article  CAS  Google Scholar 

  17. Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 11, 315–321 (2017).

    Article  CAS  Google Scholar 

  18. Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014).

    Article  Google Scholar 

  19. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  CAS  Google Scholar 

  20. Shi, T. et al. Unipolar self-doping behavior in perovskite CH3NH3PbBr3 . Appl. Phys. Lett. 106, 103902 (2015).

    Article  Google Scholar 

  21. Noh, J. H. et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013).

    Article  CAS  Google Scholar 

  22. Fang, Y., Wei, H., Dong, Q. & Huang, J. Quantification of re-absorption and re-emission processes to determine photon recycling efficiency in perovskite single crystals. Nat. Commun. 8, 14417 (2017).

    Article  CAS  Google Scholar 

  23. Saidaminov, M. I. et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat. Commun. 6, 7586 (2015).

    Article  Google Scholar 

  24. Lian, Z. et al. Perovskite CH3NH3PbI3(Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm−3. J. Am. Chem. Soc. 138, 9409–9412 (2016).

    Article  CAS  Google Scholar 

  25. Zhu, X. Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

    Article  CAS  Google Scholar 

  26. Yi, H. T., Wu, X., Zhu, X. & Podzorov, V. Intrinsic charge transport across phase transitions in hybrid organo-inorganic perovskites. Adv. Mater. 28, 6509–6514 (2016).

    Article  CAS  Google Scholar 

  27. Galkowski, K. et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9, 962–970 (2016).

    Article  CAS  Google Scholar 

  28. He, Y. & Galli, G. Perovskites for solar thermoelectric applications: a first principle study of CH3NH3AI3 (A = Pb and Sn). Chem. Mater. 26, 5394–5400 (2014).

    Article  CAS  Google Scholar 

  29. Brenner, T. M. et al. Are mobilities in hybrid organic–inorganic halide perovskites actually ‘high’? J. Phys. Chem. Lett. 6, 4754–4757 (2015).

    Article  CAS  Google Scholar 

  30. Madjet, M. E.-A. et al. Enhancing the carrier thermalization time in organometallic perovskites by halide mixing. Phys. Chem. Chem. Phys. 18, 5219–5231 (2016).

    Article  CAS  Google Scholar 

  31. Swainson, I. P. et al. Phase transitions in the perovskite methylammonium lead bromide, CH3ND3PbBr3 . J. Solid State Chem. 176, 97–104 (2003).

    Article  CAS  Google Scholar 

  32. Wei, H. et al. Trap engineering of CdTe nanoparticle for high gain, fast response, and low noise P3HT:CdTe nanocomposite photodetectors. Adv. Mater. 27, 4975–4981 (2015).

    Article  CAS  Google Scholar 

  33. Kasap, S. O. X-ray sensitivity of photoconductors: application to stabilized a-Se. J. Phys. D 33, 2853–2865 (2000).

    Article  CAS  Google Scholar 

  34. Leão, C. R. & Lordi, V. Ionic current and polarization effect in TlBr. Phys. Rev. B 87, 081202 (2013).

    Article  Google Scholar 

  35. Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).

    Article  CAS  Google Scholar 

  36. Li, C. et al. Iodine migration and its effect on hysteresis in perovskite solar cells. Adv. Mater. 28, 2446–2454 (2016).

    Article  CAS  Google Scholar 

  37. Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy Environ. Sci. 9, 1752–1759 (2016).

    Article  CAS  Google Scholar 

  38. Nakazawa, K. et al. Improvement of the CdTe diode detectors using a guard-ring electrode. IEEE Trans. Nucl. Sci. 51, 1881–1885 (2004).

    Article  CAS  Google Scholar 

  39. Niraula, M., Agata, Y. & Yasuda, K. Study of multi-electrodes structure in CdTe nuclear radiation detectors. Nucl. Sci. Symp. Conf. Rec. IEEE 7, 4532–4534 (2004).

    Google Scholar 

  40. Knoll, G. F. Radiation Detection and Measurement (John Wiley, 2010).

    Google Scholar 

  41. Berger, M. J. et al. XCOM: Photon Cross Sections Database: NIST Standard Reference Database 8 (NIST, 2013).

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Defense Threat Reduction Agency (Award No. HDTRA1-14-1-0030). We thank Y. Yan at the University of Toledo for the discussion of the doping mechanism in the mixed-halide perovskites.

Author information

Authors and Affiliations

Authors

Contributions

J.H. conceived and supervised the project. H.W. synthesized crystals, fabricated the devices, and measured the optoelectronic properties and X-ray detector sensitivity. D.D. performed and L.C. supervised the 137Cs energy spectrum measurement. H.W. and W.W. calibrated the X-ray dose rate. Y.D. carried out the XRD measurement. D.G. and T.J.S. contributed the charge carrier lifetime measurement. J.H., H.W., D.D. and L.C. wrote the manuscript, and all the authors reviewed the manuscript.

Corresponding author

Correspondence to Jinsong Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1195 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., DeSantis, D., Wei, W. et al. Dopant compensation in alloyed CH3NH3PbBr3−xClx perovskite single crystals for gamma-ray spectroscopy. Nature Mater 16, 826–833 (2017). https://doi.org/10.1038/nmat4927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing