Concerns about the planet's health call for a careful evaluation of the environmental impact of materials choices. Life-cycle assessment is a tool that can help identify sustainable materials pathways by considering the burdens of materials both during production and as a product.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Heat pump supply chain environmental impact reduction to improve the UK energy sustainability, resiliency and security
Scientific Reports Open Access 23 November 2023
-
The sponge effect and carbon emission mitigation potentials of the global cement cycle
Nature Communications Open Access 29 July 2020
-
Sustainable life cycle design aspects: how aware are material scientists?
SN Applied Sciences Open Access 10 July 2020
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Leontief, W. Input–Output Economics (Oxford Univ. Press, 1986).
Jørgensen, A. Int. J. Life Cycle Assess. 18, 296–299 (2013).
Weidema, B. P. Int. J. Life Cycle Assess. 11, 89–96 (2006).
Kelly, J. C., Sullivan, J. L., Burnham, A. & Elgowainy, A. Environ. Sci. Technol. 49, 12535–12542 (2015).
A fresh design for GREET life cycle analysis tool. Argonne National Laboratory https://greet.es.anl.gov/net (2016).
Keoleian, G., Miller, S., De Kleine, R., Fang, A. & Mosley, J. Life Cycle Material Data Update for GREET Model (Univ. Michigan, 2012).
Burnham, A., Wang, M. & Wu, Y. Development and Applications of GREET 2.7 — The Transportation Vehicle-Cycle Model (Argonne National Laboratory, 2006).
Ehrenberger, S., Dieringa, H. & Friedrich, H. E. Life Cycle Assessment of Magnesium Components in Vehicle Construction (German Aerospace Centre e.V., 2013).
Atkinson, G. & Mourato, S. Annu. Rev. Environ. Resour. 33, 317–344 (2008).
Hanley, N. & Spash, C. L. Cost–Benefit Analysis and the Environment (Edward Elgar, 1993).
Costanza, R. et al. Nature 387, 253–260 (1997).
Hein, L., van Koppen, K., de Groot, R. S. & van Ierland, E. C. Ecol. Econ. 57, 209–228 (2006).
Sonnemann, G., Castells, F. & Schuhmacher, M. Integrated Life-Cycle and Risk Assessment for Industrial Processes (CRC, 2003).
Cowell, S. J., Fairman, R. & Lofstedt, R. E. Risk Anal. 22, 879–894 (2002).
Energy Independence and Security Act of 2007 (110th US Congress, 2007); https://www.congress.gov/bill/110th-congress/house-bill/6
Lifecycle analysis of greenhouse gas emissions under the renewable fuel standard. Environmental Protection Agency http://go.nature.com/2rFLoMg (2017).
Building product disclosure and optimization — environmental product declarations. US Green Building Council http://go.nature.com/2r38ABh (2017).
ISO 14044:2006 International Organization for Standardization https://www.iso.org/standard/38498.html (2006).
ISO 14040:2006 International Organization for Standardization https://www.iso.org/standard/37456.html (2006).
Baumann, H. & Tillman, A.-M. The Hitch Hiker's Guide to LCA (Studentlitteratur, 2004).
Matthews, H. S., Hendrickson, C. T. & Matthews, D. H. Life Cycle Assessment (Creative Commons, 2015); http://www.lcatextbook.com/
Hammond, G. P., Jones, C. I. & O'Grady, A. in Handbook of Clean Energy Systems Vol. 6 (ed. Yan, J.) Ch. 22 (Wiley, 2015).
Rebitzer, G. et al. Environ. Int. 30, 701–720 (2004).
Häkkinen T. & Mäkelä K. Environmental Adaption of Concrete: Environmental Impact of Concrete and Asphalt Pavements (Technical Research Centre of Finland, 1996).
Xu, X., Gregory, J. & Kirchain, R. Transportation Research Board 94th Annual Meeting 15-4011 (National Academy of Sciences, 2015).
Matthews, H. S. & Small, M. J. J. Ind. Ecol. 4, 7–10 (2000).
Hendrickson, C., Horvath, A., Joshi, S. & Lave, L. Environ. Sci. Technol. 32, 184A–191A (1998).
Tukker, A. et al. Ecol. Econ. 68, 1928–1937 (2009).
Malça, J. & Freire, F. Renew. Sustainable Energy Rev. 15, 338–351 (2011).
Hanes, R. J., Cruze, N. B., Goel, P. K. & Bakshi, B. R. Environ. Sci. Technol. 49, 7996–8003 (2015).
Zhu, Y., Romain, C. & Williams, C. K. Nature 540, 354–362 (2016).
Ciacci, L., Harper, E. M., Nassar, N. T., Reck, B. K. & Graedel, T. E. Environ. Sci. Technol. 50, 11394–11402 (2016).
Reck, B. K. & Graedel, T. E. Science 337, 690–695 (2012).
Newell, S. A. & Field, F. R. Resour. Conserv. Recy. 22, 31–45 (1998).
Chatzisideris, M. D., Espinosa, N., Laurent, A. & Krebs, F. C. Sol. Energ. Mat. Sol. C 156, 2–10 (2016).
Weidema, B. J. Ind. Ecol. 4, 11–33 (2000).
IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).
IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).
Laurent, A., Olsen, S. I. & Hauschild, M. Z. Environ. Sci. Technol. 46, 4100–4108 (2012).
Cherubini, F. et al. Environ. Sci. Policy 64, 129–140 (2016).
Krewitt, W., Trukenmüller, A., Bachmann, T. M. & Heck, T. Int. J. Life Cycle Assess. 6, 199–210 (2001).
Pfister, S., Koehler, A. & Hellweg, S. Environ. Sci. Technol. 43, 4098–4104 (2009).
Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Nat. Mater. 15, 247–251 (2016).
Eckelman, M. J., Mauter, M. S., Isaacs, J. A. & Elimelech, M. Environ. Sci. Technol. 46, 2902–2910 (2012).
Meyer, D. E., Curran, M. A. & Gonzalez, M. A. Environ. Sci. Technol. 43, 1256–1263 (2009).
Gregory, J., Noshadravan, A., Olivetti, E. & Kirchain, R. Environ. Sci. Technol. 50, 6397–6405 (2016).
Lloyd, S. M. & Ries, R. J. Ind. Ecol. 11, 161–179 (2007).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kirchain Jr, R., Gregory, J. & Olivetti, E. Environmental life-cycle assessment. Nature Mater 16, 693–697 (2017). https://doi.org/10.1038/nmat4923
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4923
This article is cited by
-
Accelerating the design of compositionally complex materials via physics-informed artificial intelligence
Nature Computational Science (2023)
-
Heat pump supply chain environmental impact reduction to improve the UK energy sustainability, resiliency and security
Scientific Reports (2023)
-
Human carcinogenic risk analysis and utilization of shale gas water-based drilling cuttings in road materials
Environmental Science and Pollution Research (2022)
-
The sponge effect and carbon emission mitigation potentials of the global cement cycle
Nature Communications (2020)
-
Addressing environmental sustainability of biochemicals
Nature Sustainability (2020)