Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Environmental life-cycle assessment

Concerns about the planet's health call for a careful evaluation of the environmental impact of materials choices. Life-cycle assessment is a tool that can help identify sustainable materials pathways by considering the burdens of materials both during production and as a product.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of LCA, related to the analysis of the environmental burden associated with automobile mass reduction through materials change.
Figure 2: Life-cycle global warming potential (GWP) of an interstate highway, constructed in the US, of Portland cement concrete and used for 50 years, expressed in kilotonnes of CO2eq per lane mile.
Figure 3: Allocation issues.

References

  1. Leontief, W. Input–Output Economics (Oxford Univ. Press, 1986).

    Google Scholar 

  2. Jørgensen, A. Int. J. Life Cycle Assess. 18, 296–299 (2013).

    Article  Google Scholar 

  3. Weidema, B. P. Int. J. Life Cycle Assess. 11, 89–96 (2006).

    Article  Google Scholar 

  4. Kelly, J. C., Sullivan, J. L., Burnham, A. & Elgowainy, A. Environ. Sci. Technol. 49, 12535–12542 (2015).

    Article  CAS  Google Scholar 

  5. A fresh design for GREET life cycle analysis tool. Argonne National Laboratory https://greet.es.anl.gov/net (2016).

  6. Keoleian, G., Miller, S., De Kleine, R., Fang, A. & Mosley, J. Life Cycle Material Data Update for GREET Model (Univ. Michigan, 2012).

    Google Scholar 

  7. Burnham, A., Wang, M. & Wu, Y. Development and Applications of GREET 2.7 — The Transportation Vehicle-Cycle Model (Argonne National Laboratory, 2006).

    Book  Google Scholar 

  8. Ehrenberger, S., Dieringa, H. & Friedrich, H. E. Life Cycle Assessment of Magnesium Components in Vehicle Construction (German Aerospace Centre e.V., 2013).

    Google Scholar 

  9. Atkinson, G. & Mourato, S. Annu. Rev. Environ. Resour. 33, 317–344 (2008).

    Article  Google Scholar 

  10. Hanley, N. & Spash, C. L. Cost–Benefit Analysis and the Environment (Edward Elgar, 1993).

    Google Scholar 

  11. Costanza, R. et al. Nature 387, 253–260 (1997).

    Article  CAS  Google Scholar 

  12. Hein, L., van Koppen, K., de Groot, R. S. & van Ierland, E. C. Ecol. Econ. 57, 209–228 (2006).

    Article  Google Scholar 

  13. Sonnemann, G., Castells, F. & Schuhmacher, M. Integrated Life-Cycle and Risk Assessment for Industrial Processes (CRC, 2003).

    Book  Google Scholar 

  14. Cowell, S. J., Fairman, R. & Lofstedt, R. E. Risk Anal. 22, 879–894 (2002).

    Article  Google Scholar 

  15. Energy Independence and Security Act of 2007 (110th US Congress, 2007); https://www.congress.gov/bill/110th-congress/house-bill/6

  16. Lifecycle analysis of greenhouse gas emissions under the renewable fuel standard. Environmental Protection Agency http://go.nature.com/2rFLoMg (2017).

  17. Building product disclosure and optimization — environmental product declarations. US Green Building Council http://go.nature.com/2r38ABh (2017).

  18. ISO 14044:2006 International Organization for Standardization https://www.iso.org/standard/38498.html (2006).

  19. ISO 14040:2006 International Organization for Standardization https://www.iso.org/standard/37456.html (2006).

  20. Baumann, H. & Tillman, A.-M. The Hitch Hiker's Guide to LCA (Studentlitteratur, 2004).

    Google Scholar 

  21. Matthews, H. S., Hendrickson, C. T. & Matthews, D. H. Life Cycle Assessment (Creative Commons, 2015); http://www.lcatextbook.com/

    Google Scholar 

  22. Hammond, G. P., Jones, C. I. & O'Grady, A. in Handbook of Clean Energy Systems Vol. 6 (ed. Yan, J.) Ch. 22 (Wiley, 2015).

    Google Scholar 

  23. Rebitzer, G. et al. Environ. Int. 30, 701–720 (2004).

    Article  CAS  Google Scholar 

  24. Häkkinen T. & Mäkelä K. Environmental Adaption of Concrete: Environmental Impact of Concrete and Asphalt Pavements (Technical Research Centre of Finland, 1996).

    Google Scholar 

  25. Xu, X., Gregory, J. & Kirchain, R. Transportation Research Board 94th Annual Meeting 15-4011 (National Academy of Sciences, 2015).

    Google Scholar 

  26. Matthews, H. S. & Small, M. J. J. Ind. Ecol. 4, 7–10 (2000).

    Article  Google Scholar 

  27. Hendrickson, C., Horvath, A., Joshi, S. & Lave, L. Environ. Sci. Technol. 32, 184A–191A (1998).

    Article  CAS  Google Scholar 

  28. Tukker, A. et al. Ecol. Econ. 68, 1928–1937 (2009).

    Article  Google Scholar 

  29. Malça, J. & Freire, F. Renew. Sustainable Energy Rev. 15, 338–351 (2011).

    Article  Google Scholar 

  30. Hanes, R. J., Cruze, N. B., Goel, P. K. & Bakshi, B. R. Environ. Sci. Technol. 49, 7996–8003 (2015).

    Article  CAS  Google Scholar 

  31. Zhu, Y., Romain, C. & Williams, C. K. Nature 540, 354–362 (2016).

    Article  CAS  Google Scholar 

  32. Ciacci, L., Harper, E. M., Nassar, N. T., Reck, B. K. & Graedel, T. E. Environ. Sci. Technol. 50, 11394–11402 (2016).

    Article  CAS  Google Scholar 

  33. Reck, B. K. & Graedel, T. E. Science 337, 690–695 (2012).

    Article  CAS  Google Scholar 

  34. Newell, S. A. & Field, F. R. Resour. Conserv. Recy. 22, 31–45 (1998).

    Article  Google Scholar 

  35. Chatzisideris, M. D., Espinosa, N., Laurent, A. & Krebs, F. C. Sol. Energ. Mat. Sol. C 156, 2–10 (2016).

    Article  CAS  Google Scholar 

  36. Weidema, B. J. Ind. Ecol. 4, 11–33 (2000).

    Article  CAS  Google Scholar 

  37. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  38. IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

  39. Laurent, A., Olsen, S. I. & Hauschild, M. Z. Environ. Sci. Technol. 46, 4100–4108 (2012).

    Article  CAS  Google Scholar 

  40. Cherubini, F. et al. Environ. Sci. Policy 64, 129–140 (2016).

    Article  Google Scholar 

  41. Krewitt, W., Trukenmüller, A., Bachmann, T. M. & Heck, T. Int. J. Life Cycle Assess. 6, 199–210 (2001).

    Article  CAS  Google Scholar 

  42. Pfister, S., Koehler, A. & Hellweg, S. Environ. Sci. Technol. 43, 4098–4104 (2009).

    Article  CAS  Google Scholar 

  43. Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Nat. Mater. 15, 247–251 (2016).

    Article  CAS  Google Scholar 

  44. Eckelman, M. J., Mauter, M. S., Isaacs, J. A. & Elimelech, M. Environ. Sci. Technol. 46, 2902–2910 (2012).

    Article  CAS  Google Scholar 

  45. Meyer, D. E., Curran, M. A. & Gonzalez, M. A. Environ. Sci. Technol. 43, 1256–1263 (2009).

    Article  CAS  Google Scholar 

  46. Gregory, J., Noshadravan, A., Olivetti, E. & Kirchain, R. Environ. Sci. Technol. 50, 6397–6405 (2016).

    Article  CAS  Google Scholar 

  47. Lloyd, S. M. & Ries, R. J. Ind. Ecol. 11, 161–179 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolph E. Kirchain Jr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirchain Jr, R., Gregory, J. & Olivetti, E. Environmental life-cycle assessment. Nature Mater 16, 693–697 (2017). https://doi.org/10.1038/nmat4923

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4923

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing