Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Universal quinone electrodes for long cycle life aqueous rechargeable batteries

Abstract

Aqueous rechargeable batteries provide the safety, robustness, affordability, and environmental friendliness necessary for grid storage and electric vehicle operations, but their adoption is plagued by poor cycle life due to the structural and chemical instability of the anode materials. Here we report quinones as stable anode materials by exploiting their structurally stable ion-coordination charge storage mechanism and chemical inertness towards aqueous electrolytes. Upon rational selection/design of quinone structures, we demonstrate three systems that coupled with industrially established cathodes and electrolytes exhibit long cycle life (up to 3,000 cycles/3,500 h), fast kinetics (≥20C), high anode specific capacity (up to 200–395 mAh g−1), and several examples of state-of-the-art specific energy/energy density (up to 76–92 Wh kg−1/ 161–208 Wh l−1) for several operational pH values (−1 to 15), charge carrier species (H+, Li+, Na+, K+, Mg2+), temperature (−35 to 25 °C), and atmosphere (with/without O2), making them a universal anode approach for any aqueous battery technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of aqueous rechargeable batteries based on quinone anodes operating at different pH values with the indicated corresponding redox chemistries.
Figure 2: Quinone-based acidic batteries.
Figure 3: Quinone-based metal-ion neutral batteries.
Figure 4: Quinone-based alkaline batteries.
Figure 5: Comparison of anode materials for aqueous rechargeable batteries.

Similar content being viewed by others

References

  1. Dunn, B., Kamath, H. & Tarascon, J.-M. Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011).

    Article  CAS  Google Scholar 

  2. Goodenough, J. B. & Manthiram, A. A perspective on electrical energy storage. MRS Commun. 4, 135–142 (2014).

    Article  CAS  Google Scholar 

  3. Liu, P., Ross, R. & Newman, A. Long-range, low-cost electric vehicles enabled by robust energy storage. MRS Energy Sustain. 2, E12 (2015).

    Article  Google Scholar 

  4. Kim, H. et al. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114, 11788–11827 (2014).

    Article  CAS  Google Scholar 

  5. Pan, H. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    Article  CAS  Google Scholar 

  6. Kundu, D. et al. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016).

    Article  CAS  Google Scholar 

  7. Reddy, T. B. Linden’s Handbook of Batteries 4th edn (McGraw-Hill, 2011).

    Google Scholar 

  8. Lam, L. T., Haigh, N. P., Phyland, C. G. & Urban, A. J. Failure mode of valve-regulated lead-acid batteries under high-rate partial-state-of-charge operation. J. Power Sources 133, 126–134 (2004).

    Article  CAS  Google Scholar 

  9. Luo, J. Y., Cui, W. J., He, P. & Xia, Y. Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760–765 (2010).

    Article  CAS  Google Scholar 

  10. Shukla, A. K., Venugopalan, S. & Hariprakash, B. Nickel-based rechargeable batteries. J. Power Sources 100, 125–148 (2001).

    Article  CAS  Google Scholar 

  11. Lam, L. T. et al. VRLA Ultrabattery for high-rate partial-state-of-charge operation. J. Power Sources 174, 16–29 (2007).

    Article  CAS  Google Scholar 

  12. Buiel, E. R. et al. Cell assembly for an energy storage device with activated carbon electrodes. US patent US 7881042 B2 (2011).

  13. Yu, N., Gao, L., Zhao, S. & Wang, Z. Electrodeposited PbO2 thin film as positive electrode in PbO2/AC hybrid capacitor. Electrochim. Acta 54, 3835–3841 (2009).

    Article  CAS  Google Scholar 

  14. Lei, D. et al. Performance enhancement and side reactions in rechargeable nickel–iron batteries with nanostructured electrodes. ACS Appl. Mater. Interfaces 8, 2088–2096 (2016).

    Article  CAS  Google Scholar 

  15. Ying, T. K. et al. Studies on rechargeable NiMH batteries. Int. J. Hydrog. Energy 31, 525–530 (2006).

    Article  CAS  Google Scholar 

  16. Li, W., Dahn, J. R. & Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994).

    Article  CAS  Google Scholar 

  17. Suo, L. et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  Google Scholar 

  18. Levi, M. D. et al. Ultrafast anode for high voltage aqueous Li-ion batteries. J. Solid State Electrochem. 16, 3443–3448 (2012).

    Article  CAS  Google Scholar 

  19. Wu, Y. P. et al. Aqueous rechargeable lithium batteries as an energy storage system of superfast charging like filling gasoline. Energy Environ. Sci. 6, 2093–2104 (2013).

    Article  CAS  Google Scholar 

  20. Sun, D. et al. Long-lived aqueous rechargeable lithium batteries using mesoporous LiTi2(PO4)3@C anode. Sci. Rep. 5, 17452 (2015).

    Article  CAS  Google Scholar 

  21. Qin, H., Song, Z. P., Zhan, H. & Zhou, Y. H. Aqueous rechargeable alkali-ion batteries with polyimide anode. J. Power Sources 249, 367–372 (2014).

    Article  CAS  Google Scholar 

  22. Dong, X. et al. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life. Sci. Adv. 2, e1501038 (2016).

    Article  Google Scholar 

  23. Whitacre, J. F. et al. An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications. J. Power Sources 213, 255–264 (2012).

    Article  CAS  Google Scholar 

  24. Pasta, M. et al. Full open-framework batteries for stationary energy storage. Nat. Commun. 5, 3007 (2014).

    Article  CAS  Google Scholar 

  25. Milczarek, G. & Inganäs, O. Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks. Science 335, 1468–1471 (2012).

    Article  CAS  Google Scholar 

  26. Poizot, P. & Dolhem, F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4, 2003–2019 (2011).

    Article  CAS  Google Scholar 

  27. Liang, Y., Tao, Z. & Chen, J. Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742–769 (2012).

    Article  CAS  Google Scholar 

  28. Liang, Y. et al. Heavily n-dopable π-conjugated redox polymers with ultrafast energy storage capability. J. Am. Chem. Soc. 137, 4956–4959 (2015).

    Article  CAS  Google Scholar 

  29. Muench, S. et al. Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).

    Article  CAS  Google Scholar 

  30. Lin, K. et al. Alkaline quinone flow battery. Science 349, 1529–1532 (2015).

    Article  CAS  Google Scholar 

  31. Haupler, B. et al. Aqueous zinc-organic polymer battery with a high rate performance and long lifetime. NPG Asia Mater. 8, e283 (2016).

    Article  CAS  Google Scholar 

  32. Alt, H., Binder, H., Köhling, A. & Sandstede, G. Investigation into the use of quinone compounds-for battery cathodes. Electrochim. Acta 17, 873–887 (1972).

    Article  CAS  Google Scholar 

  33. Choi, W., Harada, D., Oyaizu, K. & Nishide, H. Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries. J. Am. Chem. Soc. 133, 19839–19843 (2011).

    Article  CAS  Google Scholar 

  34. Liang, Y., Zhang, P. & Chen, J. Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries. Chem. Sci. 4, 1330–1337 (2013).

    Article  CAS  Google Scholar 

  35. Vijayasekaran, B. & Basha, C. A. Shrinking core discharge model for the negative electrode of a lead-acid battery. J. Power Sources 158, 710–721 (2006).

    Article  CAS  Google Scholar 

  36. Moseley, P. T. High rate partial-state-of-charge operation of VRLA batteries. J. Power Sources 127, 27–32 (2004).

    Article  CAS  Google Scholar 

  37. Chen, L. et al. Aqueous lithium-ion batteries using O2 self-elimination polyimides electrodes. J. Electrochem. Soc. 162, A1972–A1977 (2015).

    Article  CAS  Google Scholar 

  38. Kim, M. B. & Dixon, D. W. Hydrolysis of aliphatic naphthalene diimides: effect of charge placement in the side chains. J. Phys. Org. Chem. 21, 731–737 (2008).

    Article  CAS  Google Scholar 

  39. Smith, R. M. & Hansen, D. E. The pH-rate profile for the hydrolysis of a peptide bond. J. Am. Chem. Soc. 120, 8910–8913 (1998).

    Article  CAS  Google Scholar 

  40. Freire, M. et al. A new active Li-Mn-O compound for high energy density Li-ion batteries. Nat. Mater. 15, 173–177 (2016).

    Article  CAS  Google Scholar 

  41. Shu, Q. et al. Proton-induced dysfunction mechanism of cathodes in an aqueous lithium ion battery. J. Phys. Chem. C 117, 6929–6932 (2013).

    Article  CAS  Google Scholar 

  42. Wang, Y. et al. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015).

    Article  CAS  Google Scholar 

  43. Wang, R. Y., Wessells, C. D., Huggins, R. A. & Cui, Y. Highly reversible open framework nanoscale electrodes for divalent Ion batteries. Nano Lett. 13, 5748–5752 (2013).

    Article  CAS  Google Scholar 

  44. Song, Z. et al. Polymer–graphene nanocomposites as ultrafast-charge and -discharge cathodes for rechargeable lithium batteries. Nano Lett. 12, 2205–2211 (2012).

    Article  CAS  Google Scholar 

  45. Bäuerlein, P., Antonius, C., Löffler, J. & Kümpers, J. Progress in high-power nickel–metal hydride batteries. J. Power Sources 176, 547–554 (2008).

    Article  CAS  Google Scholar 

  46. Rubin, E. J. & Baboian, R. A correlation of the solution properties and the electrochemical behavior of the nickel hydroxide electrode in binary aqueous alkali hydroxides. J. Electrochem. Soc. 118, 428–433 (1971).

    Article  CAS  Google Scholar 

  47. Pierozynski, B. On the low temperature performance of nickel-metal hydride (NiMH) batteries. Int. J. Electrochem. Sci. 6, 860–866 (2011).

    CAS  Google Scholar 

  48. Senoh, H., Hara, Y., Inoue, H. & Iwakura, C. Charge efficiency of misch metal-based hydrogen storage alloy electrodes at relatively low temperatures. Electrochim. Acta 46, 967–971 (2001).

    Article  CAS  Google Scholar 

  49. Vesborg, P. C. K. & Jaramillo, T. F. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012).

    Article  CAS  Google Scholar 

  50. Cordell, D. & White, S. Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3, 2027–2049 (2011).

    Article  Google Scholar 

  51. Sun, D. et al. High-rate LiTi2(PO4)3@N–C composite via bi-nitrogen sources doping. ACS Appl. Mater. Interfaces 7, 28337–28345 (2015).

    Article  CAS  Google Scholar 

  52. Gheytani, S. et al. Chromate conversion coated aluminium as a light-weight and corrosion-resistant current collector for aqueous lithium-ion batteries. J. Mater. Chem. A 4, 395–399 (2016).

    Article  CAS  Google Scholar 

  53. An, Q. et al. Nanoflake-assembled hierarchical Na3V2(PO4)3/C microflowers: superior Li storage performance and insertion/extraction mechanism. Adv. Energy Mater. 5, 1401963 (2015).

    Article  CAS  Google Scholar 

  54. Wessells, C. D., Huggins, R. A. & Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2, 550 (2011).

    Article  CAS  Google Scholar 

  55. Yuesheng, F., Dian, H. & Yifeng, F. A storage battery resistant to pressure and beneficial to environmental protection, which is suitable for being used in deep sea. China patent WO2002101868 A1 (2002).

  56. Sevilla, M. & Mokaya, R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ. Sci. 7, 1250–1280 (2014).

    Article  CAS  Google Scholar 

  57. Guo, H.-j. et al. Preparation of manganese oxide with high density by decomposition of MnCO3 and its application to synthesis of LiMn2O4 . J. Power Sources 189, 95–100 (2009).

    Article  CAS  Google Scholar 

  58. Pinus, I. Y. et al. On cationic mobility in Nasicon phosphates LiTi2(PO4)3 and Li0.9Ti1.9Nb0.1(PO4)3 . Solid State Ion. 212, 112–116 (2012).

    Article  CAS  Google Scholar 

  59. Vicente, F., Gregori, J., García-Jareño, J. J. & Giménez-Romero, D. Cyclic voltammetric generation and electrochemical quartz crystal microbalance characterization of passive layer of nickel in a weakly acid medium. J. Solid State Electrochem. 9, 684–690 (2005).

    Article  CAS  Google Scholar 

  60. Zhangyong, H., Ping, C. & Guofeng, M. Method for manufacturing ultra-high temperature long-service life nickel-hydrogen batteries. China patent CN104577224 A (2015).

  61. Melnicki, L. S., Lazic, I. & Cipris, D. Role of Additives in Minimizing Zinc Electrode Shape Change: The Effect of Lead on the Kinetics of Zn(II) Reduction in Concentrated Alkaline Media (Office of Naval Research, 1985); file:///Users/tbm2091/Downloads/ADA158806.pdf

    Google Scholar 

  62. Ware, M. Prussian Blue: Artists’ Pigment and Chemists’ Sponge. J. Chem. Educ. 85, 612–620 (2008).

    Article  CAS  Google Scholar 

  63. Dugas, R., Zhang, B., Rozier, P. & Tarascon, J. M. Optimization of Na-ion battery systems based on polyanionic or layered positive electrodes and carbon anodes. J. Electrochem. Soc. 163, A867–A874 (2016).

    Article  CAS  Google Scholar 

  64. Moncada, A., Piazza, S., Sunseri, C. & Inguanta, R. Recent improvements in PbO2 nanowire electrodes for lead-acid battery. J. Power Sources 275, 181–188 (2015).

    Article  CAS  Google Scholar 

  65. Hu, J., Zhang, D. & Harris, F. W. Ruthenium(III) chloride catalyzed oxidation of pyrene and 2,7-disubstitued pyrenes: an efficient, one-step synthesis of pyrene-4,5-diones and pyrene-4,5,9,10-tetraones. J. Org. Chem. 70, 707–708 (2005).

    Article  CAS  Google Scholar 

  66. Kassaee, M. Z., Hattami, M. & Moradi, L. Benzyltrimethylammonium fluorochromate(VI): a novel, efficient and selective oxidant. Acta Chim. Slov. 51, 743–750 (2004).

    CAS  Google Scholar 

  67. Yao, M. & Wang, X. Preparation of phenanthraquinone. Chem. Reagents 6, 367–368 (1992).

    Google Scholar 

  68. fastmarkets.com (2016); https://www.fastmarkets.com/base-metals

  69. Weinstein, L. & Dash, R. Supercapacitor carbons. Have exotic carbons failed? Mater. Today 16, 356–357 (2013).

    Article  Google Scholar 

  70. alibaba.com (2016); http://www.alibaba.com

  71. Klein, M. G., Eskra, M., Plivelich, R. & Ralston, P. Bipolar Nickel Metal Hydride Battery (Electro Energy, 2002); http://haszstudios.com/electro/products/technicalpapers/BipolarNickel.pdf

    Google Scholar 

  72. Henriksen, G. L., Amine, K., Liu, J. & Nelson, P. A. Materials Cost Evaluation Report for High-Power Li-ion HEV Batteries (2002); http://www.ipd.anl.gov/anlpubs/2003/01/45346.pdf

    Google Scholar 

Download references

Acknowledgements

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), US Department of Energy, under Award Number DE-AR0000380. The aqueous Mg-ion battery study was supported by the Office of Naval Research Young Investigator Award (N00014-13-1-0543). The aqueous Na-ion battery study was supported by the National Science Foundation (NSF CMMI-1400261). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. A.F. thanks the Shenzhen Peacock Plan project (KQTD20140630110339343) for support. We thank J. Xu and E. R. Buiel for helpful discussions and Z. Meng for the help on fabricating alkaline batteries.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and Y.L. conceived this work; Y.L., P.L. and Y.Y. designed the experiments; Y.L., Y.J. and S.G. synthesized the materials; Y.L., Y.J., S.G. and K.-Y.L. carried out the electrochemical measurements; A.F. and Y.L. performed the battery material cost analysis; Y.Y. and A.F. directed the project; Y.L., A.F. and Y.Y. co-wrote the paper; all authors analysed the results and commented on the manuscript.

Corresponding authors

Correspondence to Antonio Facchetti or Yan Yao.

Ethics declarations

Competing interests

Y.Y. and Y.L. are inventors of patent applications (US/2014/0308581, US/2016/0049659) on the neutral and alkaline batteries described herein. Y.Y., Y.L., S.G. and Y.J. are inventors of a patent application (US/62/165,377) on the acid batteries. A.F. has no competing interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Jing, Y., Gheytani, S. et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nature Mater 16, 841–848 (2017). https://doi.org/10.1038/nmat4919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing