Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry

Abstract

The development of catalysts able to assist industrially important chemical processes is a topic of high importance. In view of the catalytic capabilities of small metal clusters, research efforts are being focused on the synthesis of novel catalysts bearing such active sites. Here we report a heterogeneous catalyst consisting of Pd4 clusters with mixed-valence 0/+1 oxidation states, stabilized and homogeneously organized within the walls of a metal–organic framework (MOF). The resulting solid catalyst outperforms state-of-the-art metal catalysts in carbene-mediated reactions of diazoacetates, with high yields (>90%) and turnover numbers (up to 100,000). In addition, the MOF-supported Pd4 clusters retain their catalytic activity in repeated batch and flow reactions (>20 cycles). Our findings demonstrate how this synthetic approach may now instruct the future design of heterogeneous catalysts with advantageous reaction capabilities for other important processes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: X-ray crystal structure.
Figure 2: Cluster structure.
Figure 3: Density functional theory calculations.
Figure 4: Proposed mechanism for Pd4-catalysed intermolecular Buchner reaction.

References

  1. Argo, A. M., Odzak, J. F., Lai, F. S. & Gates, B. C. Observation of ligand effects during alkene hydrogenation catalysed by supported metal clusters. Nature 415, 623–626 (2002).

    CAS  Google Scholar 

  2. Corma, A. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 5, 775–781 (2013).

    CAS  Google Scholar 

  3. Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A. & Corma, A. Small gold clusters formed in solution give reaction turnover numbers of 107 at room temperature. Science 338, 1452–1455 (2012).

    CAS  Google Scholar 

  4. Wang, N. et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 138, 7484–7487 (2016).

    CAS  Google Scholar 

  5. Yamamoto, K. et al. Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat. Chem. 1, 397–402 (2009).

    CAS  Google Scholar 

  6. Boronat, M., Leyva-Pérez, A. & Corma, A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc. Chem. Res. 47, 834–844 (2014).

    CAS  Google Scholar 

  7. Campbell, C. T. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002).

    CAS  Google Scholar 

  8. Lei, Y. et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328, 224–228 (2010).

    CAS  Google Scholar 

  9. Tyo, E. C. & Vajda, S. Catalysis by clusters with precise numbers of atoms. Nat. Nanotech. 10, 577–588 (2015).

    CAS  Google Scholar 

  10. Murahashi, T. Discrete sandwich compounds of monolayer palladium sheets. Science 313, 1104–1107 (2006).

    CAS  Google Scholar 

  11. Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    CAS  Google Scholar 

  12. Serna, P. & Gates, B. C. Molecular metal catalysts on supports: organometallic chemistry meets surface science. Acc. Chem. Res. 47, 2612–2620 (2014).

    CAS  Google Scholar 

  13. Okrut, A. et al. Selective molecular recognition by nanoscale environments in a supported iridium cluster catalyst. Nat. Nanotech. 9, 459–465 (2014).

    CAS  Google Scholar 

  14. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 974–986 (2013).

    CAS  Google Scholar 

  15. Gascon, J., Corma, A., Kapteijn, F. & Llabrés i Xamena, F. X. Metal organic framework catalysis: quo vadis? ACS Catal. 4, 361–378 (2014).

    CAS  Google Scholar 

  16. Moon, H. R., Lim, D.-W. & Suh, M. P. Fabrication of metal nanoparticles in metal–organic frameworks. Chem. Soc. Rev. 42, 1807–1824 (2013).

    CAS  Google Scholar 

  17. Li, X. et al. Controlling catalytic properties of Pd nanoclusters through their chemical environment at the atomic level using isoreticular metal–organic frameworks. ACS Catal. 6, 3461–3468 (2016).

    CAS  Google Scholar 

  18. Liu, H. et al. Controllable encapsulation of ‘clean’ metal clusters within MOFs through kinetic modulation: towards advanced heterogeneous nanocatalysts. Angew. Chem. Int. Ed. 55, 5019–5023 (2016).

    CAS  Google Scholar 

  19. Liu, L. et al. Size-confined growth of atom-precise nanoclusters in metal–organic frameworks and their catalytic applications. Nanoscale 8, 1407–1412 (2016).

    CAS  Google Scholar 

  20. Yang, Q., Xu, Q., Yu, S.-H. & Jiang, H.-L. Pd Nanocubes@ZIF-8: integration of plasmon-driven photothermal conversion with a metal-organic framework for efficient and selective catalysis. Angew. Chem. Int. Ed. 55, 3685–3689 (2016).

    CAS  Google Scholar 

  21. Seidel, G. & Fürstner, A. Structure of a reactive gold carbenoid. Angew. Chem. Int. Ed. 53, 4807–4811 (2014).

    CAS  Google Scholar 

  22. Wu, X.-F., Anbarasan, P., Neumann, H. & Beller, M. From noble metal to nobel prize: palladium-catalyzed coupling reactions as key methods in organic synthesis. Angew. Chem. Int. Ed. 49, 9047–9050 (2010).

    CAS  Google Scholar 

  23. Albéniz, A. C., Espinet, P., Manrique, R. & Pérez-Mateo, A. Observation of the direct products of migratory insertion in aryl palladium carbene complexes and their subsequent hydrolysis. Angew. Chem. Int. Ed. 41, 2363–2366 (2002).

    Google Scholar 

  24. Fillion, E. & Taylor, N. J. Cine-substitution in the stille coupling: evidence for the carbenoid reactivity of sp 3 - g em -Organodimetallic iodopalladio-trialkylstannylalkane intermediates. J. Am. Chem. Soc. 125, 12700–12701 (2003).

    CAS  Google Scholar 

  25. Qin, G., Li, L., Li, J. & Huang, H. Palladium-catalyzed formal insertion of carbenoids into aminals via C–N bond activation. J. Am. Chem. Soc. 137, 12490–12493 (2015).

    CAS  Google Scholar 

  26. Solé, D., Mariani, F., Bennasar, M.-L. & Fernández, I. Palladium-catalyzed intramolecular carbene insertion into C(sp 3)-H bonds. Angew. Chem. Int. Ed. 55, 6467–6470 (2016).

    Google Scholar 

  27. Gutiérrez-Bonet, Á., Juliá-Hernández, F., de Luis, B. & Martin, R. Pd-catalyzed C(sp 3)–H functionalization/carbenoid insertion: all-carbon quaternary centers via multiple C–C bond formation. J. Am. Chem. Soc. 138, 6384–6387 (2016).

    Google Scholar 

  28. McKervey, M. A., Tuladhar, S. M. & Twohig, M. F. Efficient synthesis of bicyclo[5.3.0]decatrienones and of 2-tetralones via rhodium(II) acetate-catalysed cyclisation of α-diazoketones derived from 3-arylpropionic acids. J. Chem. Soc. Chem. Commun. 129–130 (1984).

  29. Anciaux, A. J. et al. Transition-metal-catalyzed reactions of diazo compounds. 2. Addition to aromatic molecules: catalysis of Buchner’s synthesis of cycloheptatrienes. J. Org. Chem. 46, 873–876 (1981).

    CAS  Google Scholar 

  30. Maestre, L. et al. A fully recyclable heterogenized Cu catalyst for the general carbene transfer reaction in batch and flow. Chem. Sci. 6, 1510–1515 (2015).

    CAS  Google Scholar 

  31. Brozek, C. K. & Dincă, M. Cation exchange at the secondary building units of metal-organic frameworks. Chem. Soc. Rev. 43, 5456–5467 (2014).

    CAS  Google Scholar 

  32. Grancha, T. et al. Postsynthetic improvement of the physical properties in a metal-organic framework through a single crystal to single crystal transmetallation. Angew. Chem. Int. Ed. 54, 6521–6525 (2015).

    CAS  Google Scholar 

  33. Mon, M. et al. Selective gold recovery and catalysis in a highly flexible methionine-decorated metal–organic framework. J. Am. Chem. Soc. 138, 7864–7867 (2016).

    CAS  Google Scholar 

  34. Mon, M. et al. Selective and efficient removal of mercury from aqueous media with the highly flexible arms of a BioMOF. Angew. Chem. Int. Ed. 55, 11167–11172 (2016).

    CAS  Google Scholar 

  35. Murahashi, T., Uemura, T. & Kurosawa, H. Perylene-tetrapalladium sandwich complexes. J. Am. Chem. Soc. 125, 8436–8437 (2003).

    CAS  Google Scholar 

  36. Murahashi, T., Kato, N., Uemura, T. & Kurosawa, H. Rearrangement of a Pd4 skeleton from a 1D chain to a 2D sheet on the face of a perylene or fluoranthene ligand caused by exchange of the binder molecule. Angew. Chem. Int. Ed. 46, 3509–3512 (2007).

    CAS  Google Scholar 

  37. Mealli, C. et al. Theoretical aspects of the heterobimetallic dimers with the T over square structural motif. Synthesis and structure of a heteronuclear platinum and palladium complex with 1-methylcytosinato bridging ligands. Inorg. Chem. 34, 3418–3424 (1995).

    CAS  Google Scholar 

  38. Murahashi, T. & Kurosawa, H. Organopalladium complexes containing palladium-palladium bonds. Coord. Chem. Rev. 231, 207–228 (2002).

    CAS  Google Scholar 

  39. Fernández-García, M. et al. Role of the state of the metal component on the light-off performance of Pd-based three-way catalysts. J. Catal. 221, 594–600 (2004).

    Google Scholar 

  40. Liang, B., Zhou, M. & Andrews, L. Reactions of laser-ablated Ni, Pd, and Pt atoms with carbon monoxide: matrix infrared spectra and density functional calculations on M(CO)n (n = 1–4), M(CO)n (n = 1–3), and M(CO)n+ (n = 1–2), (M = Ni, Pd, Pt). J. Phys. Chem. A 104, 3905–3914 (2000).

    CAS  Google Scholar 

  41. Willner, H. et al. Superelectrophilic tetrakis(carbonyl)palladium(II)- and -platinum(II) undecafluorodiantimonate(V), [Pd(CO)4][Sb2F11]2 and [Pt(CO)4][Sb2F11]2: syntheses, physical and spectroscopic properties, their crystal, molecular, and extended structures, and density functional calculations: an experimental, computational, and comparative study. J. Am. Chem. Soc. 123, 588–602 (2001).

    CAS  Google Scholar 

  42. Nefedov, V. I. et al. ESCA and X-ray spectral study of Pd(0), Pd(I) and Pd(II) compounds with triphenylphosphine ligands. Inorg. Chim. Acta 35, L343–L344 (1979).

    CAS  Google Scholar 

  43. Searle, N. E. Ethyl diazoacetate. Org. Synth. 36, 25 (1956).

    CAS  Google Scholar 

  44. Ranocchiari, M. & Mezzetti, A. Ru/PNNP-catalyzed asymmetric imine aziridination by diazo ester activation. Organometallics 28, 3611–3613 (2009).

    CAS  Google Scholar 

  45. Horiuchi, S. et al. Multinuclear metal-binding ability of a carotene. Nat. Commun. 6, 6742 (2015).

    CAS  Google Scholar 

  46. Barder, T. E. Synthesis, structural, and electron topographical analyses of a Dialkylbiaryl Phosphine/Arene-Ligated Palladium(I) dimer: enhanced reactivity in Suzuki–Miyaura coupling reactions. J. Am. Chem. Soc. 128, 898–904 (2006).

    CAS  Google Scholar 

  47. Yin, G., Kalvet, I. & Schoenebeck, F. Trifluoromethylthiolation of aryl iodides and bromides enabled by a bench-stable and easy-to-recover dinuclear Palladium(I) catalyst. Angew. Chem. Int. Ed. 54, 6809–6813 (2015).

    CAS  Google Scholar 

  48. Maas, G. New syntheses of diazo compounds. Angew. Chem. Int. Ed. 48, 8186–8195 (2009).

    CAS  Google Scholar 

  49. Kennedy, M., McKervey, M. A., Maguire, A. R., Tuladhar, S. M. & Twohig, M. F. The intramolecular Buchner reaction of aryl diazoketones. Substituent effects and scope in synthesis. J. Chem. Soc. Perkin Trans. 1, 1047–1054 (1990).

    Google Scholar 

  50. Pereira, A. et al. Copper-carbene intermediates in the copper-catalyzed functionalization of O–H bonds. Chem. A Eur. J. 21, 9769–9775 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the MINECO (Spain) (Projects CTQ2013-46362-P, CTQ2014-56312-P and Excellence Units ‘Severo Ochoa’ and ‘Maria de Maeztu’ SEV-2012-0267 and MDM-2015-0538), the Generalitat Valenciana (Spain) (Project PROMETEOII/2014/070), the Ministero dell’Istruzione, dell’Università e della Ricerca (Italy) and the Junta de Andalucía (FQM-195 and P11-FQM-7756). M.M. thanks the MINECO for a predoctoral contract. Thanks are also extended to the Ramón y Cajal Program and the ‘Convocatoria 2015 de Ayudas Fundación BBVA a Investigadores y Creadores Culturales’ (E.P., A.L.-P. and J.F.-S.). J.G. acknowledge the financial support of the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 335746, CrystEng-MOF-MMM.

Author information

Authors and Affiliations

Authors

Contributions

E.P., A.L.-P., A.C. and D.A. designed the research; E.P. and J.F.-S. coordinated the whole work; F.R.F.-P. and M.M. performed synthetic work; D.A. performed powder and single-crystal XRD characterization and analysed data; A.L.-P. carried out the catalytic experiments; J.G. and D.O. performed spectroscopic characterization and analysed data; J.M.H. performed microscopy measurements; M.B. carried out the theoretical calculations; E.P., A.L.-P., A.C., D.A., J.F.-S., M.B. and J.G. wrote and revised the paper.

Corresponding authors

Correspondence to Antonio Leyva-Pérez, Avelino Corma, Donatella Armentano or Emilio Pardo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3280 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fortea-Pérez, F., Mon, M., Ferrando-Soria, J. et al. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nature Mater 16, 760–766 (2017). https://doi.org/10.1038/nmat4910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing