Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Activating the molecular spinterface

Abstract

The miniaturization trend in the semiconductor industry has led to the understanding that interfacial properties are crucial for device behaviour. Spintronics has not been alien to this trend, and phenomena such as preferential spin tunnelling, the spin-to-charge conversion due to the Rashba–Edelstein effect and the spin–momentum locking at the surface of topological insulators have arisen mainly from emergent interfacial properties, rather than the bulk of the constituent materials. In this Perspective we explore inorganic/molecular interfaces by looking closely at both sides of the interface. We describe recent developments and discuss the interface as an ideal platform for creating new spin effects. Finally, we outline possible technologies that can be generated thanks to the unique active tunability of molecular spinterfaces.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Timeline of selected developments in molecular spintronics: from organic spintronics devices to the concept of active molecular interfaces.
Figure 2: Examples of interfacial tuning of the properties of spin-textured surfaces.
Figure 3: Active molecular spinterface devices.

References

  1. Kroemer, H. Nobel Lecture: Quasielectric fields and band offsets: teaching electrons new tricks. Rev. Mod. Phys. 73, 783–793 (2001).

    CAS  Article  Google Scholar 

  2. Parkin, S. S. P. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    CAS  Article  Google Scholar 

  3. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    CAS  Article  Google Scholar 

  4. Rojas Sánchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013).

    Article  CAS  Google Scholar 

  5. Isasa, M. et al. Detection of inverse Rashba–Edelstein effect at Cu/Bi interface using lateral spin valves. Phys. Rev. B 93, 014420 (2016).

    Article  CAS  Google Scholar 

  6. Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    CAS  Article  Google Scholar 

  7. Dediu, V. A., Hueso, L. E., Bergenti, I. & Taliani, C. Spin routes in organic semiconductors. Nat. Mater. 8, 707–716 (2009).

    CAS  Article  Google Scholar 

  8. Xiong, Z. H., Wu, D., Vardeny, Z. V. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    CAS  Article  Google Scholar 

  9. Dediu, V. A., Murgia, M., Matacotta, F. C., Taliani, C. & Barbanera, S. Room temperature spin polarized injection in organic semiconductor. Solid State Commun. 122, 181–184 (2002).

    CAS  Article  Google Scholar 

  10. Gobbi, M., Golmar, F., Llopis, R., Casanova, F. & Hueso L. E. Room temperature spin transport in C60-based spin valves. Adv. Mater. 23, 1609–1613 (2011).

    CAS  Article  Google Scholar 

  11. Sun, X. et al. Room-temperature air-stable spin transport in bathocuproine-based spin valves. Nat. Commun. 4, 2794 (2013).

    Article  CAS  Google Scholar 

  12. Geng, R., Luong, H. M., Daugherty, T. T., Hornak, L. & Nguyen, T. D. A review on organic spintronic materials and devices: II. Magnetoresistance in organic spin valves and spin organic light emitting diodes. J. Sci. 1, 256–272 (2016).

    Google Scholar 

  13. Santos, T. S. et al. Room-temperature tunnel magnetoresistance and spin polarized tunnelling through an organic semiconductor barrier. Phys. Rev. Lett. 98, 016601 (2007).

    CAS  Article  Google Scholar 

  14. Schoonus, J. J. H. M. et al. Magnetoresistance in hybrid organic spin valves at the onset of multiple-step tunnelling. Phys. Rev. Lett. 103, 146601 (2009).

    CAS  Article  Google Scholar 

  15. Grünewald, M. et al. Tunnelling anisotropic magnetoresistance in organic spin valves. Phys. Rev. B 84, 125208 (2011).

    Article  CAS  Google Scholar 

  16. Xu, W. et al. Tunneling magnetoresistance observed in La2/3Sr1/3MnO3/organic molecule/Co junctions. Appl. Phys. Lett. 90, 072506 (2007).

    Article  CAS  Google Scholar 

  17. Vinzelberg, H. et al. Low temperature tunneling magnetoresistance on (La-Sr)MnO3-Co junctions with organic spacer layers. J. Appl. Phys. 103, 093720 (2008).

    Article  CAS  Google Scholar 

  18. Ciudad, D. et al. Sign control of magnetoresistance through chemically engineered interfaces. Adv. Mater. 26, 7561–7567 (2014).

    CAS  Article  Google Scholar 

  19. Barraud, C. et al. Unravelling the role of the interface for spin injection into organic semiconductors. Nat. Phys. 6, 615–620 (2010).

    CAS  Article  Google Scholar 

  20. Sanvito, S. The rise of spinterface science. Nat. Phys. 6, 562–564 (2010).

    CAS  Article  Google Scholar 

  21. Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structure. Adv. Mater. 11, 605–625 (1999).

    CAS  Article  Google Scholar 

  22. Kahn, A., Koch, N. & Gao, W. Electronic structure and electrical properties of interfaces between metals and π-conjugated molecular films. J. Polym. Sci. Pol. Phys. 41, 2529–2548 (2003).

    CAS  Article  Google Scholar 

  23. Zhu, X.-Y. Electronic structure and electron dynamics at molecule–metal interfaces: implications for molecule-based electronics. Surf. Sci. Rep. 56, 1–83 (2004).

    CAS  Article  Google Scholar 

  24. Braun, S., Salaneck, W. R. & Fahlman, M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 21, 1450–1472 (2009).

    CAS  Article  Google Scholar 

  25. Friend, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    CAS  Article  Google Scholar 

  26. Raman, K. V. Interface assisted molecular spintronics. Appl. Phys. Rev. 1, 031101 (2014).

    Article  CAS  Google Scholar 

  27. de Jong, M. P. Recent progress in organic spintronics. Open Phys. 14, 337–353 (2016).

    CAS  Article  Google Scholar 

  28. Duhm, S. et al. PTCDA on Au(111), Ag(111) and Cu(111): correlation of interface charge transfer to bonding distance. Org. Electron. 9, 111–118 (2008).

    CAS  Article  Google Scholar 

  29. Tautz, F. S. Structure and bonding of large aromatic molecules on noble metal surfaces: the example of PTCDA. Prog. Surf. Sci. 82, 479–520 (2007).

    CAS  Article  Google Scholar 

  30. Muscat, J. P. & Newns, M. Chemisorption on metals. Prog. Surf. Sci. 9, 1–43 (1978).

    CAS  Article  Google Scholar 

  31. Anderson P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).

    CAS  Article  Google Scholar 

  32. Newns, D. M. Self-consistent model of hydrogen chemisorption. Phys. Rev. 178, 1123–1135 (1969).

    CAS  Article  Google Scholar 

  33. Willenbockel, M. et al. The interplay between interface structure, energy level alignment and chemical bonding strength at organic–metal interfaces. Phys. Chem. Chem. Phys. 17, 1530–1548 (2015).

    CAS  Article  Google Scholar 

  34. Atodiresei, N. & Raman, K. V. Interface-assisted spintronics: tailoring at the molecular scale. MRS Bull. 39, 596–601 (2014).

    CAS  Article  Google Scholar 

  35. Butler, W. H. Tunneling magnetoresistance from a symmetry filtering effect. Sci. Tech. Adv. Mat. 9, 014106 (2008).

    Article  CAS  Google Scholar 

  36. Zhan, Y. et al. Efficient spin injection through exchange coupling at organic semiconductor/ferromagnet heterojunctions. Adv. Mater. 22, 1626–1630 (2010).

    CAS  Article  Google Scholar 

  37. Brede, J. et al. Spin- and energy-dependent tunneling through a single molecule with intramolecular spatial resolution. Phys. Rev. Lett. 105, 047204 (2010).

    Article  CAS  Google Scholar 

  38. Methfessel, T. et al. Spin scattering and spin-polarized hybrid interface states at a metal–organic interface. Phys. Rev. B 84, 224403 (2011).

    Article  CAS  Google Scholar 

  39. Lach, S. et al. Metal–organic hybrid interface states of a ferromagnet/organic semiconductor hybrid junction as basis for engineering spin injection in organic spintronics. Adv. Funct. Mater. 22, 989–997 (2012).

    CAS  Article  Google Scholar 

  40. Djeghloul, F. et al. Direct observation of a highly spin-polarized organic spinterface at room temperature. Sci. Rep. 3, 1272 (2013).

    CAS  Article  Google Scholar 

  41. Droghetti, A. et al. Electronic and magnetic properties of the interface between metal–quinoline molecules and cobalt. Phys. Rev. B 89, 094412 (2014).

    Article  CAS  Google Scholar 

  42. Shi, S. et al. Hybrid interface states and spin polarization at ferromagnetic metal–organic heterojunctions: interface engineering for efficient spin injection in organic spintronics. Adv. Funct. Mater. 24, 4812–4821 (2014).

    CAS  Article  Google Scholar 

  43. Martin, M.-B. et al. Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes. ACS Nano 8, 7890–7895 (2014).

    CAS  Article  Google Scholar 

  44. Chu, Y.-H. et al. Spin-dependent molecule symmetry at a pentacene–co spinterface. ACS Nano 9, 7027–7035 (2015).

    CAS  Article  Google Scholar 

  45. Zhang, Q. & Mi, W. Spin-polarization inversion at small organic molecule/Fe4N interfaces: a first-principles study. J. Appl. Phys. 118, 115301 (2015).

    Article  CAS  Google Scholar 

  46. Djeghloul, F. et al. High spin polarization at ferromagnetic metal−organic interfaces: a generic property. J. Phys. Chem. Lett. 7, 2310–2315 (2016).

    CAS  Article  Google Scholar 

  47. Tatay, S. et al. Self-assembled monolayer-functionalized half-metallic manganite for molecular spintronics. ACS Nano 6, 8753–8757 (2012).

    CAS  Article  Google Scholar 

  48. Galbiati, M. et al. Unveiling self-assembled monolayers' potential for molecular spintronics: spin transport at high voltage. Adv. Mater. 24, 6429–6432 (2012).

    CAS  Article  Google Scholar 

  49. Coronado, E. & Yamashita, M. Molecular spintronics: the role of coordination chemistry. Dalton Trans. 45, 16553–16555 (2016).

    CAS  Article  Google Scholar 

  50. Jang, H.-J. & Richter, C. A. Organic spin-valves and beyond: spin injection and transport in organic semiconductors and the effect of interfacial engineering. Adv. Mater. 29, 1602739 (2017).

    Article  CAS  Google Scholar 

  51. Picone, A. et al. Controlling the electronic and structural coupling of C60 nano films on Fe(001) through oxygen adsorption at the interface. ACS Appl. Mater. Interfaces 8, 26418–26424 (2016).

    CAS  Article  Google Scholar 

  52. Wong, P. K. J., Zhang, W., van der Laan, G. & de Jong, M. P. Hybridization-induced charge rebalancing at the weakly interactive C60/Fe3O4(001) spinterface. Org. Elec. 29, 39–43 (2016).

    CAS  Article  Google Scholar 

  53. Poggini, L. et al. An organic spin valve embedding a self-assembled monolayer of organic radicals. Adv. Mater. Interfaces 3, 1500855 (2016).

    Article  CAS  Google Scholar 

  54. Raman, K. V. et al. Interface-engineered templates for molecular spin memory devices. Nature 493, 509–513 (2013).

    CAS  Article  Google Scholar 

  55. Venkataraman, K. & Moodera, J. S. High density molecular memory storage with read and write capabilities. US patent 13/423,520 (2014).

  56. Droghetti, A. et al. Dynamic spin filtering at the Co/Alq3 interface mediated by weakly coupled second layer molecules. Nat. Commun. 7, 12668 (2016).

    CAS  Article  Google Scholar 

  57. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    CAS  Article  Google Scholar 

  58. Mannini, M. et al. Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468, 417–421 (2010).

    CAS  Article  Google Scholar 

  59. Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nat. Mater. 6, 516–520 (2007).

    CAS  Article  Google Scholar 

  60. Margheriti, L. et al. X-ray detected magnetic hysteresis of thermally evaporated terbium double-decker oriented films. Adv. Mater. 22, 5488–5493 (2010).

    CAS  Article  Google Scholar 

  61. Lodi Rizzini, A. et al. Coupling single molecule magnets to ferromagnetic substrates. Phys. Rev. Lett. 107, 177205 (2011).

    CAS  Article  Google Scholar 

  62. Moorsom, T. et al. Spin-polarized electron transfer in ferromagnet/C60 interfaces. Phys. Rev. B 90, 125311 (2014).

    Article  CAS  Google Scholar 

  63. Gruber, M. et al. Exchange bias and room-temperature magnetic order in molecular layers. Nat. Mater. 14, 981–984 (2015).

    CAS  Article  Google Scholar 

  64. Puschnig, P. et al. Reconstruction of molecular orbital densities from photoemission data. Science 326, 702–706 (2009).

    CAS  Article  Google Scholar 

  65. Campbell, V. E. et al. Engineering the magnetic coupling and anisotropy at the molecule–magnetic surface interface in molecular spintronic devices. Nat. Commun. 7, 13646 (2016).

    CAS  Article  Google Scholar 

  66. Bairagi, K. et al. Tuning the magnetic anisotropy at a molecule–metal interface. Phys. Rev. Lett. 114, 247203 (2015).

    CAS  Article  Google Scholar 

  67. Ma´Mari, F. A. et al. Beating the Stoner criterion using molecular interfaces. Nature 524, 69–73 (2015).

    Article  CAS  Google Scholar 

  68. Fahrendorf, S. et al. Accessing 4f-states in single-molecule spintronics. Nat. Commun. 4, 2425 (2013).

    Article  CAS  Google Scholar 

  69. Callsen, M., Caciuc, V., Kiselev, N., Atodiresei, N. & Blügel, S. Magnetic hardening induced by nonmagnetic organic molecules. Phys. Rev. Lett. 111, 106805 (2013).

    Article  CAS  Google Scholar 

  70. Atodiresei, N. et al. Design of the local spin polarization at the organic–ferromagnetic interface. Phys. Rev. Lett. 105, 066601 (2010).

    Article  CAS  Google Scholar 

  71. Li, D. et al. Symmetry-selected spin-split hybrid states in C60/ferromagnetic interfaces. Phys. Rev. B 93, 085425 (2016).

    Article  CAS  Google Scholar 

  72. Sanvito, S. Molecular spintronics. Chem. Soc. Rev. 40, 3336–3355 (2011).

    CAS  Article  Google Scholar 

  73. Dediu, V., Kabanov, V. V. & Sidorenko A. S. Dimensional effects in V/Cu superconducting superlattices. Phys. Rev. B 49, 4027–4032 (1994).

    CAS  Article  Google Scholar 

  74. Pitaevskii, L. P., Lifshitz, E. M. & Landau, L. D. Statistical Physics 9: Theory of the Condensed State (Elsevier, 1995).

    Google Scholar 

  75. Kaganov, M. L. Surface magnetism. Zh. Eksp. Teor. Fiz. 62, 1196–1200 (1972).

    Google Scholar 

  76. Wang, X. et al. Robust manipulation of magnetism in dilute magnetic semiconductor (Ga,Mn)As by organic molecules. Adv. Mater. 27, 8043–8050 (2015).

    CAS  Article  Google Scholar 

  77. Brede, J. et al. Long-range magnetic coupling between nanoscale organic–metal hybrids mediated by a nanoskyrmion lattice. Nat. Nanotech. 9, 1018–1023 (2014).

    CAS  Article  Google Scholar 

  78. Sessi, P., Bathon, T., Kokh, K. A., Tereshchenko, O. E. & Bode, M. Probing the electronic properties of individual MnPc molecules coupled to topological states. Nano Lett. 14, 5092–5096 (2014).

    CAS  Article  Google Scholar 

  79. Jakobs, S. et al. Controlling the spin texture of topological insulators by rational design of organic molecules. Nano Lett. 15, 6022–6029 (2015).

    CAS  Article  Google Scholar 

  80. Bathon, T., Sessi, P., Kokh, K. A., Tereshchenko, O. E. & Bode, M. Systematics of molecular self-assembled networks at topological insulators surfaces. Nano Lett. 15, 2442–2447 (2015).

    CAS  Article  Google Scholar 

  81. Caputo, M. et al. Manipulating the topological interface by molecular adsorbates: adsorption of Co-phthalocyanine on Bi2Se3 . Nano Lett. 16, 3409–3414 (2016).

    CAS  Article  Google Scholar 

  82. Sessi, P., Bathon, T., Kokh, K. A., Tereshchenko O. E. & Bode, M. Single electron gating of topological insulators. Adv. Mater. 28, 10073–10078 (2016).

    CAS  Article  Google Scholar 

  83. Stadtmüller, B. et al. Modifying the surface of a Rashba-split Pb-Ag alloy using tailored metal–organic bonds. Phys. Rev. Lett. 117, 096805 (2016).

    Article  CAS  Google Scholar 

  84. Bihlmayer, G., Blügel, S. & Chulkov, E. V. Enhanced Rashba spin-orbit splitting in Bi/Ag(111) and Pb/Ag(111) surface alloys from first principles. Phys. Rev. B 75, 195414 (2007).

    Article  CAS  Google Scholar 

  85. Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotech. 9, 794–807 (2014).

    CAS  Article  Google Scholar 

  86. Bhimanapati, G. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 9, 11509–11539 (2015).

    CAS  Article  Google Scholar 

  87. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photon. 4, 611–622 (2010).

    CAS  Article  Google Scholar 

  88. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    CAS  Article  Google Scholar 

  89. Navarro-Moratalla, E. et al. Enhanced superconductivity in atomically thin TaS2 . Nat. Commun. 7, 11043 (2016).

    CAS  Article  Google Scholar 

  90. Candini, A., Klyatskaya, S., Ruben, M., Wernsdorfer, W. & Affronte, M. Graphene spintronic devices with molecular nanomagnets. Nano Lett. 11, 2634–2639 (2011).

    CAS  Article  Google Scholar 

  91. Hermanns, Chr. F. et al. Magnetic coupling of porphyrin molecules through graphene. Adv. Mater. 25, 3473–3477 (2013).

    CAS  Article  Google Scholar 

  92. González-Herrero, H. et al. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 352, 437–441 (2016).

    Article  CAS  Google Scholar 

  93. Gobbi, M. et al. Periodic potentials in hybrid van der Waals heterostructures formed by supramolecular lattices on graphene. Nat. Commun. 8, 14969 (2017).

    Article  CAS  Google Scholar 

  94. Cobas, E., Friedman, A. L., van't Erve, O. M. J., Robinson, J. T. & Jonker, B. T. Graphene as a tunnel barrier: graphene-based magnetic tunnel junctions. Nano Lett. 12, 3000–3004 (2012).

    CAS  Article  Google Scholar 

  95. Comstock, M. J. et al. Reversible photomechanical switching of individual engineered molecules at a metallic surface. Phys. Rev. Lett. 99, 038301 (2007).

    Article  CAS  Google Scholar 

  96. Nguyen, T. D., Ehrenfreund, E. & Vardeny, Z. V. Spin-polarized light-emitting diode based on an organic bipolar spin valve. Science 337, 204–209 (2012).

    CAS  Article  Google Scholar 

  97. Prezioso, M. et al. A single-device universal logic gate based on a magnetically enhanced memristor. Adv. Mater. 25, 534–538 (2013).

    CAS  Article  Google Scholar 

  98. Arramel et al. Reversible light induced conductance switching of asymmetric diarylethenes on gold: surface and electronic studies. Nanoscale 5, 9277–9282 (2013).

    CAS  Article  Google Scholar 

  99. Sun, X. et al. Coexistence of long-distance spin transport and photo-response in a single organic device. Adv. Mater. 28, 2609–2615 (2016).

    CAS  Article  Google Scholar 

  100. Varene, E., Bogner, L., Bronner, C. & Tegeder, P. Ultrafast exciton population, relaxation, and decay dynamics in thin oligothiophene films. Phys. Rev. Lett. 109, 207601 (2012).

    CAS  Article  Google Scholar 

  101. Van der Molen, S. J. et al. Light-controlled conductance switching of ordered metal−molecule−metal devices. Nano Lett. 9, 76–80 (2009).

    CAS  Article  Google Scholar 

  102. Tegeder, P. Optically and thermally induced molecular switching processes at metal surfaces. J. Phys. Condens. Matter 24, 394001 (2012).

    Article  CAS  Google Scholar 

  103. Kim, D. et al. Flexible molecular-scale electronic devices composed of diarylethene photoswitching molecules. Adv. Mater. 26, 3968 (2014).

    CAS  Article  Google Scholar 

  104. Miyamachi, T. et al. Robust spin crossover and memristance across a single molecule. Nat. Commun. 3, 938 (2012).

    Article  CAS  Google Scholar 

  105. Dugay, J. et al. Spin switching in electronic devices based on 2D assemblies of spin-crossover nanoparticles. Adv. Mater. 27, 1288–1293 (2015).

    CAS  Article  Google Scholar 

  106. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008).

    CAS  Article  Google Scholar 

  107. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

    CAS  Article  Google Scholar 

  108. Cinchetti, M. et al. Tailoring the spin functionality of a hybrid metal–organic interface by means of alkali-metal doping. Phys. Rev. Lett. 104, 217602 (2010).

    Article  CAS  Google Scholar 

  109. Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296–1323 (2007).

    CAS  Article  Google Scholar 

  110. Bersuker, G., Zeitzoff, P., Brown, G. & Huff, H. R. Dielectrics for future transistors. Mater. Today 7, 26–33 (2004).

    CAS  Article  Google Scholar 

  111. Chiang, K. C. et al. High-performance SrTiO3 MIM capacitors for analog applications. IEEE Trans. Electron Dev. 9, 2312–2319 (2006).

    Article  CAS  Google Scholar 

  112. Ortiz, R. P., Facchetti, A. & Marks, T. J. High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 110, 205–239 (2010).

    CAS  Article  Google Scholar 

  113. Cinchetti, M. Topology communicates. Nat. Nanotech. 9, 965–966 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the EU COST Action MOLSPIN: Molecular Spintronics (CA15128), from the DFG by the SFB/TRR 173: Spin+X: spin in its collective environment (Project B05) (M.C.), from Italian Grant PRIN QCNaMos (V.A.D.), and from the European Research Council (257654-SPINTROS) and the Ministerio de Economia y Competitividad (MAT2015-65159-R) (L.E.H.). We thank F. Tinti for her critical reading of the manuscript, and R. Llopis and N. Haag for their help in preparing the graphic material. Finally, we thank the many collaborators that have contributed to our understanding of this discipline along the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis E. Hueso.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cinchetti, M., Dediu, V. & Hueso, L. Activating the molecular spinterface. Nature Mater 16, 507–515 (2017). https://doi.org/10.1038/nmat4902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4902

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing