Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging

Abstract

Among the variety of magnetic textures available in nature, antiferromagnetism is one of the most ‘discrete’ because of the exact cancellation of its staggered internal magnetization. It is therefore very challenging to probe. However, its insensitivity to external magnetic perturbations, together with the intrinsic sub-picosecond dynamics, make it very appealing for tomorrow’s information technologies1. Thus, it is essential to understand the microscopic mechanisms governing antiferromagnetic domains to achieve accurate manipulation and control. Using optical second-harmonic generation, a unique and laboratory-available tool2, we succeeded in imaging with sub-micrometre resolution both electric and antiferromagnetic orders in the model multiferroic BiFeO3. We show here that antiferromagnetic domains can be manipulated with low power consumption, using sub-coercive electric fields and sub-picosecond light pulses. Interestingly, we also show that antiferromagnetic and ferroelectric domains can behave independently, thus revealing that magneto-electric coupling can lead to various arrangements of the two orders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ferroelectric configuration of the 001 BiFeO3 epitaxial layer.
Figure 2: Second-harmonic generation wide-field imaging.
Figure 3: Imaging magneto-electric coupling.
Figure 4: Manipulation of the AF order in BiFeO3.

Similar content being viewed by others

References

  1. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

    Article  CAS  Google Scholar 

  2. Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96–118 (2005).

    Article  CAS  Google Scholar 

  3. Yamada, T., Saito, S. & Shimomura, Y. Magnetic anisotropy, magnetostricition, and magnetic domain walls in NiO. II. Experiment. J. Phys. Soc. Japan 21, 672–680 (1966).

    Article  CAS  Google Scholar 

  4. Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    Article  CAS  Google Scholar 

  5. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    Article  CAS  Google Scholar 

  6. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  CAS  Google Scholar 

  7. Arai, K. et al. Three-dimensional spin orientation in antiferromagnetic domain walls of NiO studied by X-ray magnetic linear dichroism photoemission electron microscopy. Phys. Rev. B 85, 104418 (2012).

    Article  Google Scholar 

  8. Hillebrecht, F. U. et al. Magnetic moments at the surface of antiferromagnetic NiO(100). Phys. Rev. Lett. 86, 3419 (2001).

    Article  CAS  Google Scholar 

  9. Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006).

    Article  CAS  Google Scholar 

  10. Fiebig, M., Lottermoser, Th., Frölich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    Article  CAS  Google Scholar 

  11. Fiebig, M. et al. Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation. Phys. Rev. Lett. 84, 5620 (2000).

    Article  CAS  Google Scholar 

  12. Sando, D. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013).

    Article  CAS  Google Scholar 

  13. Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrites. Phys. Rev. B 71, 060401(R) (2005).

    Article  Google Scholar 

  14. Balke, N. et al. Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotech. 4, 868–875 (2009).

    Article  CAS  Google Scholar 

  15. Trassin, M., De Luca, G., Manz, S. & Fiebig, M. Probing ferroelectric domain engineering in BiFeO3 thin films by second harmonic generation. Adv. Mater. 27, 4871–4876 (2015).

    Article  CAS  Google Scholar 

  16. Hertzer, G. in Handbook of Magnetism and Advanced Magnetic Materials Vol. 4 (eds Kronmueller, H. & Parkin, S.) (John Wiley, 2007).

    Google Scholar 

  17. Gomonay, H. & Loktev, V. M. Magnetostriction and magnetoelastic domains in antiferromagnets. J. Phys. Cond. Matter 14, 3959 (2002).

    Article  CAS  Google Scholar 

  18. Lebeugle, D. et al. Electric-field-induced spin-flop in BiFeO3 single crystals at room-temperature. Phys. Rev. Lett. 100, 227602 (2008).

    Article  CAS  Google Scholar 

  19. Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).

    Article  CAS  Google Scholar 

  20. Infante, I. C. et al. Bridging multiferroic phase transitions by epitaxial strain in BiFeO3 . Phys. Rev. Lett. 105, 057601 (2010).

    Article  CAS  Google Scholar 

  21. Ramirez, M. O. et al. Magnon sidebands and spin-charge coupling in bismuth ferrite probed by nonlinear optical spectroscopy. Phys. Rev. B 79, 224106 (2009).

    Article  Google Scholar 

  22. Kadomtseva, A. M. et al. Phase transitions in multiferroic BiFeO3 crystals, thin-layers, and ceramics: enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail’. Phase Trans. 79, 1019–1042 (2006).

    Article  CAS  Google Scholar 

  23. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).

    Article  CAS  Google Scholar 

  24. Talbayev, D., Lee, S., Cheong, S.-W. & Taylor, A. J. Terahertz wave generation via optical rectification from multiferroic BiFeO3 . Appl. Phys. Lett. 93, 212906 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the ‘Région Ile de France’ under the contract ‘CALPHOSPIN’, from the ‘Agence Nationale de la Recherche’ project MULTIDOLLS (ANR-12-BS04-0010-02) and from the ‘programme transversal nanosciences Acospin’. We would also like to thank R. Belkhou, A. Mougin and A. Thiaville for the loan of some equipment and C. Mocuta for crystallographic measurements on the films. We acknowledge fruitful discussions with F. Charra, C. Fiorini, A. Zvezdin and M. Fiebig as well as invaluable technical support from G. LeGoff and G. Cannies. Lastly, we thank B. Dkhil and M. Bibes for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.-Y.C., E.H. and M.V. performed the SHG measurements and analysis. J.-Y.C. and M.V. developed the SHG setup. S.F. performed the PFM measurements and analysis. C.C. grew and characterized the BFO samples. J.-Y.C., S.F. and M.V. wrote the manuscript. All authors contributed to the discussions.

Corresponding author

Correspondence to M. Viret.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauleau, JY., Haltz, E., Carrétéro, C. et al. Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging. Nature Mater 16, 803–807 (2017). https://doi.org/10.1038/nmat4899

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing