Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging

Abstract

Among the variety of magnetic textures available in nature, antiferromagnetism is one of the most ‘discrete’ because of the exact cancellation of its staggered internal magnetization. It is therefore very challenging to probe. However, its insensitivity to external magnetic perturbations, together with the intrinsic sub-picosecond dynamics, make it very appealing for tomorrow’s information technologies1. Thus, it is essential to understand the microscopic mechanisms governing antiferromagnetic domains to achieve accurate manipulation and control. Using optical second-harmonic generation, a unique and laboratory-available tool2, we succeeded in imaging with sub-micrometre resolution both electric and antiferromagnetic orders in the model multiferroic BiFeO3. We show here that antiferromagnetic domains can be manipulated with low power consumption, using sub-coercive electric fields and sub-picosecond light pulses. Interestingly, we also show that antiferromagnetic and ferroelectric domains can behave independently, thus revealing that magneto-electric coupling can lead to various arrangements of the two orders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Ferroelectric configuration of the 001 BiFeO3 epitaxial layer.
Figure 2: Second-harmonic generation wide-field imaging.
Figure 3: Imaging magneto-electric coupling.
Figure 4: Manipulation of the AF order in BiFeO3.

References

  1. 1

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotech. 11, 231–241 (2016).

    CAS  Article  Google Scholar 

  2. 2

    Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96–118 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Yamada, T., Saito, S. & Shimomura, Y. Magnetic anisotropy, magnetostricition, and magnetic domain walls in NiO. II. Experiment. J. Phys. Soc. Japan 21, 672–680 (1966).

    CAS  Article  Google Scholar 

  4. 4

    Catalan, G. & Scott, J. F. Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347–351 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    CAS  Article  Google Scholar 

  7. 7

    Arai, K. et al. Three-dimensional spin orientation in antiferromagnetic domain walls of NiO studied by X-ray magnetic linear dichroism photoemission electron microscopy. Phys. Rev. B 85, 104418 (2012).

    Article  Google Scholar 

  8. 8

    Hillebrecht, F. U. et al. Magnetic moments at the surface of antiferromagnetic NiO(100). Phys. Rev. Lett. 86, 3419 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5, 823–829 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Fiebig, M., Lottermoser, Th., Frölich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Fiebig, M. et al. Determination of the magnetic symmetry of hexagonal manganites by second harmonic generation. Phys. Rev. Lett. 84, 5620 (2000).

    CAS  Article  Google Scholar 

  12. 12

    Sando, D. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrites. Phys. Rev. B 71, 060401(R) (2005).

    Article  Google Scholar 

  14. 14

    Balke, N. et al. Deterministic control of ferroelastic switching in multiferroic materials. Nat. Nanotech. 4, 868–875 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Trassin, M., De Luca, G., Manz, S. & Fiebig, M. Probing ferroelectric domain engineering in BiFeO3 thin films by second harmonic generation. Adv. Mater. 27, 4871–4876 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Hertzer, G. in Handbook of Magnetism and Advanced Magnetic Materials Vol. 4 (eds Kronmueller, H. & Parkin, S.) (John Wiley, 2007).

    Google Scholar 

  17. 17

    Gomonay, H. & Loktev, V. M. Magnetostriction and magnetoelastic domains in antiferromagnets. J. Phys. Cond. Matter 14, 3959 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Lebeugle, D. et al. Electric-field-induced spin-flop in BiFeO3 single crystals at room-temperature. Phys. Rev. Lett. 100, 227602 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Heron, J. T. et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature 516, 370–373 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Infante, I. C. et al. Bridging multiferroic phase transitions by epitaxial strain in BiFeO3 . Phys. Rev. Lett. 105, 057601 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Ramirez, M. O. et al. Magnon sidebands and spin-charge coupling in bismuth ferrite probed by nonlinear optical spectroscopy. Phys. Rev. B 79, 224106 (2009).

    Article  Google Scholar 

  22. 22

    Kadomtseva, A. M. et al. Phase transitions in multiferroic BiFeO3 crystals, thin-layers, and ceramics: enduring potential for a single phase, room-temperature magnetoelectric ‘holy grail’. Phase Trans. 79, 1019–1042 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Talbayev, D., Lee, S., Cheong, S.-W. & Taylor, A. J. Terahertz wave generation via optical rectification from multiferroic BiFeO3 . Appl. Phys. Lett. 93, 212906 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the ‘Région Ile de France’ under the contract ‘CALPHOSPIN’, from the ‘Agence Nationale de la Recherche’ project MULTIDOLLS (ANR-12-BS04-0010-02) and from the ‘programme transversal nanosciences Acospin’. We would also like to thank R. Belkhou, A. Mougin and A. Thiaville for the loan of some equipment and C. Mocuta for crystallographic measurements on the films. We acknowledge fruitful discussions with F. Charra, C. Fiorini, A. Zvezdin and M. Fiebig as well as invaluable technical support from G. LeGoff and G. Cannies. Lastly, we thank B. Dkhil and M. Bibes for a critical reading of the manuscript.

Author information

Affiliations

Authors

Contributions

J.-Y.C., E.H. and M.V. performed the SHG measurements and analysis. J.-Y.C. and M.V. developed the SHG setup. S.F. performed the PFM measurements and analysis. C.C. grew and characterized the BFO samples. J.-Y.C., S.F. and M.V. wrote the manuscript. All authors contributed to the discussions.

Corresponding author

Correspondence to M. Viret.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 334 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chauleau, J., Haltz, E., Carrétéro, C. et al. Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging. Nature Mater 16, 803–807 (2017). https://doi.org/10.1038/nmat4899

Download citation

Further reading