Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

EGFR and HER2 activate rigidity sensing only on rigid matrices

Abstract

Epidermal growth factor receptor (EGFR) interacts with integrins during cell spreading and motility, but little is known about the role of EGFR in these mechanosensing processes. Here we show, using two different cell lines, that in serum- and EGF-free conditions, EGFR or HER2 activity increase spreading and rigidity-sensing contractions on rigid, but not soft, substrates. Contractions peak after 15–20 min, but diminish by tenfold after 4 h. Addition of EGF at that point increases spreading and contractions, but this can be blocked by myosin-II inhibition. We further show that EGFR and HER2 are activated through phosphorylation by Src family kinases (SFK). On soft surfaces, neither EGFR inhibition nor EGF stimulation have any effect on cell motility. Thus, EGFR or HER2 can catalyse rigidity sensing after associating with nascent adhesions under rigidity-dependent tension downstream of SFK activity. This has broad implications for the roles of EGFR and HER2 in the absence of EGF both for normal and cancerous growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rigidity-sensing activity measured by local CUs number.
Figure 2: Ligand-free EGFR and HER2 activity affects local CUs.
Figure 3: pEGFR localizes to early adhesions on rigid substrates.
Figure 4: EGFR and HER2 affect local contractility through Src.
Figure 5: EGF activates local contraction activity.

Similar content being viewed by others

References

  1. Wang, H. B., Dembo, M. & Wang, Y. L. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 279, C1345–C1350 (2000).

    Article  CAS  Google Scholar 

  2. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  3. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  CAS  Google Scholar 

  4. Elosegui-Artola, A. et al. Rigidity sensing and adaptation through regulation of integrin types. Nat. Mater. 13, 631–637 (2014).

    Article  CAS  Google Scholar 

  5. Ghassemi, S. et al. Cells test substrate rigidity by local contractions on submicrometer pillars. Proc. Natl Acad. Sci. USA 109, 5328–5333 (2012).

    Article  CAS  Google Scholar 

  6. Wolfenson, H. et al. Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat. Cell Biol. 18, 33–42 (2016).

    Article  CAS  Google Scholar 

  7. Meacci, G. et al. α-Actinin links extracellular matrix rigidity-sensing contractile units with periodic cell-edge retractions. Mol. Biol. Cell 27, 3471–3479 (2016).

    Article  CAS  Google Scholar 

  8. Yang, B. et al. Mechanosensing controlled directly by tyrosine kinases. Nano Lett. 16, 5951–5961 (2016).

    Article  CAS  Google Scholar 

  9. Sato, K.-I. Cellular functions regulated by phosphorylation of EGFR on Tyr845. Int. J. Mol. Sci. 14, 10761–10790 (2013).

    Article  Google Scholar 

  10. Bill, H. M. et al. Epidermal growth factor receptor-dependent regulation of integrin-mediated signaling and cell cycle entry in epithelial cells. Mol. Cell. Biol. 24, 8586–8599 (2004).

    Article  CAS  Google Scholar 

  11. Huveneers, S. & Danen, E. H. J. Adhesion signaling—crosstalk between integrins, Src and Rho. J. Cell Sci. 122, 1059–1069 (2009).

    Article  CAS  Google Scholar 

  12. Eberwein, P. et al. Modulation of focal adhesion constituents and their down-stream events by EGF: on the cross-talk of integrins and growth factor receptors. Biochim. Biophys. Acta 1853, 2183–2198 (2015).

    Article  CAS  Google Scholar 

  13. Schneider, I. C., Hays, C. K. & Waterman, C. M. Epidermal growth factor-induced contraction regulates paxillin phosphorylation to temporally separate traction generation from de-adhesion. Mol. Biol. Cell 20, 3155–3167 (2009).

    Article  CAS  Google Scholar 

  14. Moasser, M. M. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26, 6469–6487 (2007).

    Article  CAS  Google Scholar 

  15. Iwabu, A., Smith, K., Allen, F. D., Lauffenburger, D. A. & Wells, A. Epidermal growth factor induces fibroblast contractility and motility via a protein kinase C delta-dependent pathway. J. Biol. Chem. 279, 14551–14560 (2004).

    Article  CAS  Google Scholar 

  16. Geiger, B., Bershadsky, A., Pankov, R. & Yamada, K. M. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat. Rev. Mol. Cell Biol. 2, 793–805 (2001).

    Article  CAS  Google Scholar 

  17. Wolfenson, H., Lavelin, I. & Geiger, B. Dynamic regulation of the structure and functions of integrin adhesions. Dev. Cell 24, 447–458 (2013).

    Article  CAS  Google Scholar 

  18. Ménard, S., Tagliabue, E., Campiglio, M. & Pupa, S. M. Role of HER2 gene overexpression in breast carcinoma. J. Cell. Physiol. 182, 150–162 (2000).

    Article  Google Scholar 

  19. Giannone, G. et al. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116, 431–443 (2004).

    Article  CAS  Google Scholar 

  20. Cabodi, S. et al. Integrin regulation of epidermal growth factor (EGF) receptor and of EGF-dependent responses. Biochem. Soc. Trans. 32, 438–442 (2004).

    Article  CAS  Google Scholar 

  21. Yamada, K. M. & Even-Ram, S. Integrin regulation of growth factor receptors. Nat. Cell Biol. 4, E75–E76 (2002).

    Article  CAS  Google Scholar 

  22. Balanis, N. & Carlin, C. R. Mutual cross-talk between fibronectin integrins and the EGF receptor: molecular basis and biological significance. Cell. Logist. 2, 46–51 (2012).

    Article  Google Scholar 

  23. Cai, Y. et al. Nonmuscle myosin IIA-dependent force inhibits cell spreading and drives F-actin flow. Biophys. J. 91, 3907–3920 (2006).

    Article  CAS  Google Scholar 

  24. Seshacharyulu, P. et al. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin. Ther. Targets 16, 15–31 (2012).

    Article  CAS  Google Scholar 

  25. Xu, K.-P., Yin, J. & Yu, F.-S. X. SRC-family tyrosine kinases in wound- and ligand-induced epidermal growth factor receptor activation in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 47, 2832–2839 (2006).

    Article  Google Scholar 

  26. Iskratsch, T. et al. FHOD1 is needed for directed forces and adhesion maturation during cell spreading and migration. Dev. Cell 27, 545–559 (2013).

    Article  CAS  Google Scholar 

  27. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  28. Adelstein, R. S. & Anne Conti, M. Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature 256, 597–598 (1975).

    Article  CAS  Google Scholar 

  29. Matsui, T. et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 15, 2208–2216 (1996).

    Article  CAS  Google Scholar 

  30. Kim, J.-H. & Asthagiri, A. R. Matrix stiffening sensitizes epithelial cells to EGF and enables the loss of contact inhibition of proliferation. J. Cell Sci. 124, 1280–1287 (2011).

    Article  CAS  Google Scholar 

  31. Stuurman, N., Edelstein, A. D., Amodaj, N., Hoover, K. H. & Vale, R. D. Computer Control of Microscopes using μManager. Curr. Protoc. Mol. Biol. Ed. Unit14.20 (2010).

  32. Schoen, I., Hu, W., Klotzsch, E. & Vogel, V. Probing cellular traction forces by micropillar arrays: contribution of substrate warping to pillar deflection. Nano Lett. 10, 1823–1830 (2010).

    Article  CAS  Google Scholar 

  33. Ghibaudo, M. et al. Traction forces and rigidity sensing regulate cell functions. Soft Matter 4, 1836–1843 (2008).

    Article  CAS  Google Scholar 

  34. Palchesko, R. N., Zhang, L., Sun, Y. & Feinberg, A. W. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS ONE 7, e51499 (2012).

    Article  CAS  Google Scholar 

  35. Su, J., Muranjan, M. & Sap, J. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Curr. Biol. 9, 505–511 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the members of the Sheetz lab for their help. Especially M. X. Yao for preparing EGFR and HER2 mutants supported by MBI. This work was funded by National Institutes of Health (NIH) grant ‘Analysis of 120 nm local contractions linked to rigidity sensing’ (1 R01 GM100282-01), National Institutes of Health (NIH) grant ‘Tropomyosin and tyrosine kinases in mechanics of cancer’ (5 R01 GM113022-02) and by the NIH Common Fund Nanomedicine programme (PN2 EY016586). H.W. was supported by a Marie Curie International Outgoing Fellowship within the Seventh European Commission Framework Programme (PIOF-GA-2012-332045). B.Y. was supported by the MBI in Singapore. M.P.S. was partially supported by the Mechanobiology Institute, National University of Singapore.

Author information

Authors and Affiliations

Authors

Contributions

M.S., S.L., B.Y., R.C. and J.H., performed the experiments; S.L. wrote MATLAB codes for data analysis; M.S., S.L., B.Y., C.H. and R.C. analysed the data; H.W., J.H., and M.P.S. designed the study; M.S., S.L., H.W., J.H. and M.P.S. wrote and prepared the manuscript.

Corresponding authors

Correspondence to Haguy Wolfenson, James Hone or Michael P. Sheetz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, M., Liu, S., Yang, B. et al. EGFR and HER2 activate rigidity sensing only on rigid matrices. Nature Mater 16, 775–781 (2017). https://doi.org/10.1038/nmat4893

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4893

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing