Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electron crystallography for determining the handedness of a chiral zeolite nanocrystal

This article has been updated

Abstract

Chiral crystals can be exploited for applications in enantioselective separation and catalysis. However, the study of chirality at the atomic level in a sub-micrometre-sized crystal is difficult due to the lack of adequate characterization methods. Herein, we present two efficient and practical methods of characterization that are based on electron crystallography. These methods are successfully applied to reveal the handedness of a chiral, zeolite nanocrystal. The handedness is identified through either a comparison of two high-resolution transmission electron microscope images, taken from the same nanocrystal but along different zone axes by tilting it around its screw axis, or the intensity asymmetry of a Bijvoet pair of reflections in a single precession electron-diffraction pattern. These two approaches provide new ways to determine the handedness of small, chiral crystals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic representation of a six-fold rotation of helices with different handedness.
Figure 2: Determination of the handedness for the HPM-1 from a set of HRTEM images.
Figure 3: Comparison of two HRTEM images with gold nanoparticles as markers.
Figure 4: Handedness determination of the chiral zeolite using a PED pattern.

Change history

  • 02 June 2017

    In the Fig. 2 caption, the following text has been added: "We chose the c axis upwards for convenience." In the first paragraph of 'Determination of handedness by HRTEM imaging', the following text has been added: "For either left or right handedness, the shift direction depends only on the crystal rotation. When a right-handed crystal is rotated anticlockwise with the rotation axis up, the image shift from f1 to f2 is always downwards, irrespective of the c-axis direction. The choice does not affect the determination of the handedness."

References

  1. 1

    Yang, Y., Su, B., Yan, Q. & Ren, Q. Separation of naproxen enantiomers by supercritical/subcritical fluid chromatography. J. Pharm. Biomed. Anal. 39, 815–818 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Pasteur, L. Recherches sur les relations qui peuvent exister entre la forme crystalline, la composition chimique et le sens de la polarization rotatoire. Ann. Chim. Phys. 24, 442–459 (1848).

    Google Scholar 

  3. 3

    Bijvoet, J. M., Peerdeman, A. F. & Bommel, A. J. Determination of the absolute configuration of optically active compounds by means of X-rays. Nature 168, 271–272 (1951).

    CAS  Article  Google Scholar 

  4. 4

    Hamilton, W. C. Significance tests on the crystallographic R factor. Acta Cryst. 18, 502–510 (1965).

    CAS  Article  Google Scholar 

  5. 5

    Rogers, D. On the application of Hamiton’s ratio test to the assignment of absolute configuration and an alternative test. Acta Cryst. A 37, 734–741 (1981).

    Article  Google Scholar 

  6. 6

    Flack, H. D. On enantiomorph-polarity estimation. Acta Cryst. A 39, 876–881 (1983).

    Article  Google Scholar 

  7. 7

    Escudero-Adan, E. C., Benet-Buchholz, J. & Ballester, P. The use of Mo Kα radiation in the assignment of the absolute configuration of light-atom molecules; the importance of high-resolution data. Acta Cryst. B 80, 660–668 (2014).

    Article  Google Scholar 

  8. 8

    Scott, M. C. et al. Electron tomography at 2.4-ångström resolution. Nature 483, 444–447 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Goodman, P. & Secomb, T. W. Identification of enantiomorphously related space groups by electron diffraction. Acta Cryst. A 33, 126–133 (1977).

    Article  Google Scholar 

  10. 10

    Goodman, P. & Johnson, A. W. S. Identification of enantiomorphically-related space groups by electron diffraction—a second method. Acta Cryst. A 33, 997–1001 (1977).

    Article  Google Scholar 

  11. 11

    Tanaka, M., Takayoshi, H., Ishida, M. & Endoh, Y. Crystal chirality and helicity of the helical spin density wave in MnSi. I. convergent-beam electron diffraction. J. Phys. Soc. Japan 54, 2970–2974 (1985).

    CAS  Article  Google Scholar 

  12. 12

    Spence, J. C. H., Zuo, J. M., O’Keeffe, M., Marthinsen, K. & Hoier, R. On the minimum number of beams needed to distinguish enantiomorphs in X-ray and electron diffraction. Acta Cryst. A 50, 647–650 (1994).

    Article  Google Scholar 

  13. 13

    Saitoh, K., Tsuda, K., Terauchi, M. & Tanaka, M. Distinction between space groups having principle rotation and screw axes, which are combined with twofold rotation axes, using the coherent convergent-beam electron diffraction method. Acta Cryst. A 57, 219–230 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Inui, H., Fujii, A., Tanaka, K., Sakamoto, H. & Ishizuka, K. New electron diffraction method to identify the chirality of enantiomorphic crystals. Acta Cryst. B 59, 802–810 (2003).

    Google Scholar 

  15. 15

    Morikawa, D., Shibata, K., Kanazawa, N., Yu, X. Z. & Tokura, Y. Crystal chirality and skyrmion helicity in MnSi and (Fe, Co)Si as determined by transmission electron microscopy. Phys. Rev. B 88, 0244081–0240814 (2013).

    Article  Google Scholar 

  16. 16

    Tokunaga, Y. et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature. Nat. Commun. 6, 7638–7644 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Cowley, J. M., Nikolaev, P., Thess, A. & Smalley, R. E. Electron nano-diffraction study of carbon single-walled nanotube ropes. Chem. Phys. Lett. 265, 379–384 (1997).

    CAS  Article  Google Scholar 

  18. 18

    Qin, L. C., Ichihashi, T. & Iijima, S. On the measurement of helicity of carbon nanotubes. Ultramicroscopy 67, 181–189 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Bernaerts, D., Amelinckx, S., Van Tendeloo, G. & Van Landuyt, J. Electron microscopy of carbon nanotubes and related structures. J. Phys. Chem. Solids 58, 1807–1813 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Che, S. et al. Synthesis and characterization of chiral mesoporous silica. Nature 429, 281–284 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Ohsuna, T., Liu, Z., Che, S. & Terasaki, O. Characterization of chiral mesoporous materials by transmission electron microscopy. Small 1, 233–237 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Juchtmans, R., Béché, A., Abakumov, A., Batuk, M. & Verbeeck Using electron vortex beams to determine chirality of crystals in transmission electron microscopy. J. Phys. Rev. B 91, 094112 (2015).

    Article  Google Scholar 

  23. 23

    Winkelmann, A. & Nolze, G. Chirality determination of quartz crystals using electron backscatter diffraction. Ultramicroscopy 149, 58–63 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Vincent, R. & Midgley, P. Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53, 271–282 (1994).

    CAS  Article  Google Scholar 

  25. 25

    Wan, K. T. & Davis, M. E. Design and synthesis of a heterogeneous asymmetric catalyst. Nature 370, 449–450 (1994).

    CAS  Article  Google Scholar 

  26. 26

    Davis, M. E. New vistas in zeolite and molecular sieve catalysis. Acc. Chem. Res. 26, 111–115 (1993).

    CAS  Article  Google Scholar 

  27. 27

    Yu, J. H. & Xu, R. R. Chiral zeolite materials: structure insight and synthetic challenges. J. Mater. Chem. 18, 4021–4030 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Terasaki, O. in Molecular Sieves-Science and Technology Vol. 2 (eds Karge, H. G. & Weitkamp, J.) 72–110 (Springer, 1999).

    Google Scholar 

  29. 29

    Terasaki, O. Fine structures of zeolites. J. Electron Microsc. 43, 337–346 (1994).

    CAS  Google Scholar 

  30. 30

    Zeolite Framework Types (IZA-SC, 2017); http://asia.iza-structure.org/IZA-SC/ftc_table.php

  31. 31

    Rojas, A., Arteaga, O., Kahr, B. & Camblor, M. A. Synthesis, structure, and optical activity of HPM-1, a pure silica chiral zeolite. J. Am. Chem. Soc. 135, 11975–11984 (2013).

    CAS  Article  Google Scholar 

  32. 32

    Schmidt, J. E., Deem, M. W. & Davis, M. E. Synthesis of a specified, silica molecular sieve by using computationally predicted organic structure-directing agents. Angew. Chem. Int. Ed. 53, 8372–8374 (2014).

    CAS  Article  Google Scholar 

  33. 33

    Gemmi, M. & Oleynikov, P. Scanning reciprocal space for solving unknown structures: energy filtered diffraction tomography and rotation diffraction tomography methods. Z. Kristallogr. 228, 51–58 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Allen, L. J., McBride, W., O’Leary, N. L. & Oxley, M. P. Exit wave reconstruction at atomic resolution. Ultramicroscopy 100, 91–104 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Wan, W., Hovmöller, S. & Zou, X. Structure projection reconstruction from through-focus series of high-resolution transmission electron microscopy images. Ultramicroscopy 115, 50–60 (2012).

    CAS  Article  Google Scholar 

  36. 36

    Oleynikov, P. eMap and eSlice: a software package for crystallographic computing. Cryst. Res. Technol. 46, 569–579 (2011).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge M. A. Camblor (ICMM, Madrid, Spain) and M. E. Davis (CALTECH, USA) for providing them with the zeolite samples. The authors also thank K. Tsuda (Tohoku University, Japan) for CBED experiments and discussions, W. Wan (Stockholm University, Sweden) for help with the through-focus series of HRTEM images, I. Onishi for help on TEM experiments, S. Asahina for help on SEM experiments and T. Ohsuna (Nagoya University, Japan) for discussions. Support from VR (Y.M. & P.O.), JEOL Ltd (P.O.), Berzelii Centre EXSELENT on Porous Materials and 3DEM-Natur, Sweden, BK21 Plus, Korea (O.T.) and the Shanghaitech Startup Funding (Y.M.) is acknowledged.

Author information

Affiliations

Authors

Contributions

O.T. and P.O. designed and guided the project. Y.M. and P.O. performed PED experiments and Y.M. performed HRTEM experiments. Y.M., O.T. and P. O. contributed to the manuscript.

Corresponding authors

Correspondence to Peter Oleynikov or Osamu Terasaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2313 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Oleynikov, P. & Terasaki, O. Electron crystallography for determining the handedness of a chiral zeolite nanocrystal. Nature Mater 16, 755–759 (2017). https://doi.org/10.1038/nmat4890

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing