The degeneration of photoreceptors in the retina is one of the major causes of adult blindness in humans. Unfortunately, no effective clinical treatments exist for the majority of retinal degenerative disorders. Here we report on the fabrication and functional validation of a fully organic prosthesis for long-term in vivo subretinal implantation in the eye of Royal College of Surgeons rats, a widely recognized model of retinitis pigmentosa. Electrophysiological and behavioural analyses reveal a prosthesis-dependent recovery of light sensitivity and visual acuity that persists up to 6–10 months after surgery. The rescue of the visual function is accompanied by an increase in the basal metabolic activity of the primary visual cortex, as demonstrated by positron emission tomography imaging. Our results highlight the possibility of developing a new generation of fully organic, highly biocompatible and functionally autonomous photovoltaic prostheses for subretinal implants to treat degenerative blindness.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    , , & Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat. Rev. Genet. 11, 273–284 (2010).

  2. 2.

    , & Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Ther. 19, 154–161 (2012).

  3. 3.

    , & Retinitis pigmentosa. Lancet 368, 1795–1809 (2006).

  4. 4.

    et al. Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat. Med. 5, 1183–1187 (1999).

  5. 5.

    & Rod-derived cone viability factor for treating blinding diseases: from clinic to redox signaling. Sci. Transl. Med. 2, 26ps16 (2010).

  6. 6.

    et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329, 413–417 (2010).

  7. 7.

    et al. Restoration of vision after transplantation of photoreceptors. Nature 485, 99–103 (2012).

  8. 8.

    et al. Repair of the degenerate retina by photoreceptor transplantation. Proc. Natl Acad. Sci. USA 110, 354–359 (2013).

  9. 9.

    , & Experimental implantation of epiretinal retina implants (EPI-RET) with an IOL-type receiver unit. J. Neural Eng. 4, S38–S49 (2007).

  10. 10.

    et al. Cortical activation via an implanted wireless retinal prosthesis. Invest. Ophthalmol. Vis. Sci. 46, 1780–1785 (2005).

  11. 11.

    et al. Stimulation via a subretinally placed prosthetic elicits central activity and induces a trophic effect on visual responses. Invest. Ophthalmol. Vis. Sci. 48, 916–926 (2007).

  12. 12.

    et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photon. 6, 391–397 (2012).

  13. 13.

    et al. Cortical responses elicited by photovoltaic subretinal prostheses exhibit similarities to visually evoked potentials. Nat. Commun. 4, 1980 (2013).

  14. 14.

    et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015).

  15. 15.

    et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS ONE 9, e115239 (2014).

  16. 16.

    et al. Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa. Am. J. Ophthalmol. 143, 820–827 (2007).

  17. 17.

    et al. Interim results from the international trial of Second Sight’s visual prosthesis. Ophthalmology 119, 779–788 (2012).

  18. 18.

    et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc. Biol. Sci. 278, 1489–1497 (2011).

  19. 19.

    et al. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS. Proc. Biol. Sci. 280, 20130077 (2013).

  20. 20.

    Will retinal implants restore vision? Science 295, 1022–1025 (2002).

  21. 21.

    , & Retinal prostheses: current clinical results and future needs. Ophthalmology 118, 2227–2237 (2011).

  22. 22.

    et al. Development of surgical techniques for implantation of a wireless intraocular epiretinal retina implant in Gottingen minipigs. Graefes. Arch. Clin. Exp. Ophthalmol. 250, 51–59 (2012).

  23. 23.

    et al. A hybrid bioorganic interface for neuronal photoactivation. Nat. Commun. 2, 166 (2011).

  24. 24.

    et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photon. 7, 400–406 (2013).

  25. 25.

    et al. Photothermal cellular stimulation in functional bio-polymer interfaces. Sci. Rep. 5, 8911 (2015).

  26. 26.

    et al. Light-evoked hyperpolarization and silencing of neurons by conjugated polymers. Sci. Rep. 6, 22718 (2016).

  27. 27.

    et al. Mutations in MERTK, the human orthologue of the RCS rat retinal dystrophy gene, cause retinitis pigmentosa. Nat. Genet. 26, 270–271 (2000).

  28. 28.

    et al. Inflammatory and morphological characterization of a foreign body retinal response. Eur. J. Neurodegener. Dis. 4, 23–28 (2015).

  29. 29.

    et al. Characterization of a polymer-based fully organic prosthesis for implantation into the subretinal space of the rat. Adv. Healthc. Mater. 5, 2271–2282 (2016).

  30. 30.

    et al. Degeneration of cortical function in the Royal College of Surgeons rat. Vision Res. 51, 2176–2185 (2011).

  31. 31.

    , , & Quantification of spatial vision in the Royal College of Surgeons rat. Invest. Ophthalmol. Vis. Sci. 45, 932–936 (2004).

  32. 32.

    et al. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245–247 (2003).

  33. 33.

    Mouse visual cortex. Curr. Opin. Neurobiol. 13, 413–420 (2003).

  34. 34.

    et al. Transcorneal electrical stimulation promotes the survival of photoreceptors and preserves retinal function in royal college of surgeons rats. Invest. Ophthalmol. Vis. Sci. 48, 4725–4732 (2007).

  35. 35.

    , , , & Neuroprotective effect of transcorneal electrical stimulation on light-induced photoreceptor degeneration. Exp. Neurol. 219, 439–452 (2009).

  36. 36.

    et al. Electrical stimulation ameliorates light-induced photoreceptor degeneration in vitro via suppressing the proinflammatory effect of microglia and enhancing the neurotrophic potential of Müller cells. Exp. Neurol. 238, 192–208 (2012).

  37. 37.

    et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320, 385–388 (2008).

  38. 38.

    Experience-dependent expression of NPAS4 regulates plasticity in adult visual cortex. J. Physiol. 590, 4777–4787 (2012).

  39. 39.

    & Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Exp. Eye Res. 21, 167–192 (1975).

  40. 40.

    Delayed visual evoked cortical potentials in retinal disease. Acta Ophthalmol. (Copenh) 60, 497–504 (1982).

  41. 41.

    & The mouse light/dark box test. Eur. J. Pharmacol. 463, 55–65 (2003).

  42. 42.

    Positron computed tomography studies of cerebral glucose metabolism in man: theory and application in nuclear medicine. Semin. Nucl. Med. 11, 32–49 (1981).

  43. 43.

    & The Rat Brain in Stereotaxic Coordinates Vol. 6 (Elsevier, 2007).

  44. 44.

    , , , & Can the standardized uptake value characterize primary brain tumors on FDG-PET? Eur. J. Nucl. Med. 26, 1501–1509 (1999).

  45. 45.

    et al. Organic semiconducting polymers for in vitro cell growth and photostimulation. J. Mater. Chem. B 4, 5272–5283 (2016).

  46. 46.

    et al. The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT:PCBM blend thin films. J. Am. Chem. Soc. 133, 9834–9843 (2011).

  47. 47.

    & Surface-enhanced Raman study of the interaction of PEDOT:PSS with plasmonically active nanoparticles. J. Phys. Chem. C 114, 6822–6830 (2010).

  48. 48.

    et al. Surface polarization drives photo-induced charge separation at the P3HT/water interface. ACS Energy Lett. 1, 454–463 (2016).

  49. 49.

    , , , & Silencing acid-sensing ion channel 1a alters cone-mediated retinal function. J. Neurosci. 26, 5800–5809 (2006).

  50. 50.

    Materials for bioelectronics: organic electronics meets biology. Nat. Mater. 13, 775–776 (2014).

  51. 51.

    et al. Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 25, 4488–4493 (2013).

  52. 52.

    et al. Structural and functional recovery from early monocular deprivation in adult rats. Proc. Natl Acad. Sci. USA 103, 8517–8522 (2006).

  53. 53.

    et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999).

  54. 54.

    et al. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle 12, 3490–3499 (2013).

Download references


The authors thank M. M. La Vail (Beckman Vision Center, University of California San Francisco, California) for providing non-dystrophic RCS-rdy+ and dystrophic RCS rats; G. Vijfvinkel (Oftavinci BV, Geervliet, The Netherlands) for manufacturing specific surgical tools for implantation; L. Criante and S. Perissinotto for help at the laser micro-machining facility; M. Bramini and F. D. Fonzo for help in scanning electron microscopy; A. Russo, C. Orsini, F. Canu, I. Dall’Orto, A. Mehilli and D. Moruzzo for technical assistance. The work was supported by the EU project FP7-PEOPLE-212-ITN 316832 ‘OLIMPIA’ (to F.B. and G.L.); Telethon—Italy (grants GGP12033 to G.L., F.B. and S.B. and GGP14022 to G.P. and F.B.); Fondazione Cariplo (project ONIRIS 2013–0738 to MRA, G.F. and D.G.); Compagnia di San Paolo (project ID 4191 to D.G. and F.B.), the Italian Ministry of Health (project RF-2013-02358313 to G.P., G.L. and F.B.) and Istituto Italiano di Tecnologia (pre-startup project to G.L. and F.B.). The support of Ra.Mo. Foundation (Milano, Italy) and Rare Partners srl (Milano, Italy) is also acknowledged.

Author information

Author notes

    • José Fernando Maya-Vetencourt
    •  & Diego Ghezzi

    These authors contributed equally to this work.

    • Diego Ghezzi

    Present address: Center for Neuroprosthetics, Interfaculty Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.


  1. Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genoa, Italy

    • José Fernando Maya-Vetencourt
    • , Diego Ghezzi
    • , Elisabetta Colombo
    • , Paul Feyen
    • , Dmytro Shmal
    •  & Fabio Benfenati
  2. Center for Nano Science and Technology, Istituto Italiano di Tecnologia, 20133 Milan, Italy

    • Maria Rosa Antognazza
    • , Andrea Desii
    •  & Guglielmo Lanzani
  3. Ophthalmology Department, Sacro Cuore Hospital—Don Calabria, 37024 Negrar, Italy

    • Maurizio Mete
    •  & Grazia Pertile
  4. Department of Health Science, Nuclear Medicine, University of Genoa, 16132 Genoa, Italy

    • Ambra Buschiazzo
    • , Flavia Ticconi
    •  & Gianmario Sambuceti
  5. Department of Biotechnology and Applied Clinical Science, University of L’Aquila, 67100, Italy

    • Mattia Di Paolo
    • , Stefano Di Marco
    • , Rita Maccarone
    •  & Silvia Bisti
  6. Animal Facility, National Institute Cancer Research, IRCCS AOU San Martino-IST, 16132 Genoa, Italy

    • Laura Emionite
  7. Institute of Molecular Bio-imaging and Physiology (IBFM), CNR, 16163 Milan (GE section), Italy

    • Cecilia Marini
  8. Innovhub-SSI, Silk Division, 20133 Milan, Italy

    • Ilaria Donelli
    •  & Giuliano Freddi
  9. Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy

    • Fabio Benfenati


  1. Search for José Fernando Maya-Vetencourt in:

  2. Search for Diego Ghezzi in:

  3. Search for Maria Rosa Antognazza in:

  4. Search for Elisabetta Colombo in:

  5. Search for Maurizio Mete in:

  6. Search for Paul Feyen in:

  7. Search for Andrea Desii in:

  8. Search for Ambra Buschiazzo in:

  9. Search for Mattia Di Paolo in:

  10. Search for Stefano Di Marco in:

  11. Search for Flavia Ticconi in:

  12. Search for Laura Emionite in:

  13. Search for Dmytro Shmal in:

  14. Search for Cecilia Marini in:

  15. Search for Ilaria Donelli in:

  16. Search for Giuliano Freddi in:

  17. Search for Rita Maccarone in:

  18. Search for Silvia Bisti in:

  19. Search for Gianmario Sambuceti in:

  20. Search for Grazia Pertile in:

  21. Search for Guglielmo Lanzani in:

  22. Search for Fabio Benfenati in:


J.F.M.-V. and D.G. contributed equally to this work. J.F.M.-V. carried out in vivo electrophysiology experiments, behavioural analysis, and assisted in the PET trials; D.G. executed behavioural experiments, the PLR analysis, and preliminary electrophysiology; M.R.A. and A.D. fabricated and characterized the implants under the supervision of G.L.; I.D. and G.F. purified the silk protein used for the implants; M.M. and G.P. performed OCT analysis, developed and executed the chirurgical subretinal implantation; P.F. and E.C. carried out behavioural experiments; E.C. carried out the post-mortem studies on the devices; A.B., F.T., L.E., D.S. and C.M. executed PET experiments under the supervision of G.S.; M.D.P., S.D.M. and R.M. performed histological analysis under the supervision of S.B.; F.B. and G.L., conceived, supervised, and financed the project. J.F.M.-V., G.L. and F.B. wrote the manuscript. All authors discussed the experimental results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Fabio Benfenati.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information


  1. 1.

    Supplementary Information

    Supplementary movie 1

  2. 2.

    Supplementary Information

    Supplementary movie 2

  3. 3.

    Supplementary Information

    Supplementary movie 3

About this article

Publication history






Further reading