Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antifogging abilities of model nanotextures

Abstract

Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importance of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. This undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Hot drops on hydrophobic pillars.
Figure 2: Adhesion of cold and hot water on materials A and B.
Figure 3: Comparison of the adhesion of hot drops on nanopillars and on nanocones.
Figure 4: Condensation of water from a supersaturated atmosphere on nanoscale cones and pillars.

References

  1. 1

    Blossey, R. Self-cleaning surfaces—virtual realities. Nat. Mater. 2, 301–306 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Papadopoulos, P., Mammen, L., Deng, X., Vollmer, D. & Butt, H. J. How superhydrophobicity breaks down. Proc. Natl Acad. Sci. USA 110, 3254–3258 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Cheng, Y. T. & Rodak, D. E. Is the lotus leaf superhydrophobic? Appl. Phys. Lett. 86, 144101 (2005).

    Article  Google Scholar 

  4. 4

    Cheng, Y. T., Rodak, D. E., Angelopoulos, A. & Gacek, T. Microscopic observations of condensation of water on lotus leaves. Appl. Phys. Lett. 87, 194112 (2005).

    Article  Google Scholar 

  5. 5

    Wier, K. A. & McCarthy, T. J. Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: ultrahydrophobic surfaces are not always water repellent. Langmuir 22, 2433–2436 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Dorrer, C. & Rühe, J. Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 3820–3824 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Varanasi, K. K., Hsu, M., Bhate, N., Yang, W. & Deng, T. Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 95, 094101 (2009).

    Article  Google Scholar 

  8. 8

    Liu, Y., Chen, X. & Xin, J. H. Can superhydrophobic surfaces repel hot water? J. Mater. Chem. 19, 5602–5611 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Narhe, R. D., Gonzalez-Viñas, W. & Beysens, D. Water condensation on zinc surfaces treated by chemical bath deposition. Appl. Surf. Sci. 256, 4930–4933 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Gao, X. F. et al. The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv. Mater. 19, 2213–2215 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Wisdom, K. M. et al. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate. Proc. Natl Acad. Sci. USA 110, 7992–7997 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Checco, A. et al. Collapse and reversibility of the superhydrophobic state on nanotextured surfaces. Phys. Rev. Lett. 112, 216101 (2014).

    Article  Google Scholar 

  13. 13

    Park, K. C. et al. Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity. ACS Nano 6, 3789–3799 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Miljkovic, N., Enright, R. & Wang, E. N. Modeling and optimization of superhydrophobic condensation. J. Heat Trans. 135, 111004 (2013).

    Article  Google Scholar 

  15. 15

    Miljkovic, N. et al. Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179–187 (2012).

    Article  Google Scholar 

  16. 16

    Boreyko, J. B. & Chen, C.-H. Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009).

    Article  Google Scholar 

  17. 17

    Chen, X. et al. Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 21, 4617–4623 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Tian, J. et al. Efficient self-propelling of small-scale condensed microdrops by closely packed ZnO nanoneedles. J. Phys. Chem. Lett. 5, 2084–2088 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Lv, C. et al. Condensation and jumping relay of droplets on lotus leaf. Appl. Phys. Lett. 103, 021601 (2013).

    Article  Google Scholar 

  20. 20

    Dorrer, C. & Rühe, J. Wetting of silicon nanograss: from superhydrophilic to superhydrophobic surfaces. Adv. Mater. 20, 159–163 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Rykaczewski, K. et al. Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Langmuir 29, 881–891 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Lv, C., Hao, P., Yao, Z. & Niu, F. Departure of condensation droplets on superhydrophobic surfaces. Langmuir 31, 2414–2420 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Rykaczewski, K. et al. How nanorough is rough enough to make a surface superhydrophobic during water condensation? Soft Matter 8, 8786–8794 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Enright, R., Miljkovic, N., Al-Obeidi, A., Thompson, C. V. & Wang, E. N. Condensation on superhydrophobic surfaces: the role of local energy barriers and structure length scale. Langmuir 28, 14424–14432 (2012).

    CAS  Article  Google Scholar 

  25. 25

    Jiang, Y., Hirvi, J. T., Suvanto, M. & Pakkanen, T. A. Molecular dynamic simulations of anisotropic wetting and embedding of functionalized polypropylene surfaces. Chem. Phys. 429, 44–50 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Lata Singh, S., Schimmele, L. & Dietrich, S. Structures of simple liquids in contact with nanosculptured surfaces. Phy. Rev. E 91, 032405 (2015).

    Article  Google Scholar 

  27. 27

    Checco, A., Rahman, A. & Black, C. T. Robust superhydrophobicity in large-area nanostructured surfaces defined by block-copolymer self assembly. Adv. Mater. 26, 886–891 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Reyssat, M. & Quéré, D. Contact angle hysteresis generated by strong dilute defects. J. Phys. Chem. B 113, 3906–3909 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Yu, Z. J. et al. How to repel hot water from a superhydrophobic surface? J. Mater. Chem. A 2, 10639–10646 (2014).

    CAS  Article  Google Scholar 

  30. 30

    Rykaczewski, K. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir 28, 7720–7729 (2012).

    CAS  Article  Google Scholar 

  31. 31

    Khandekar, S. & Muralidhar, K. Dropwise Condensation on Inclined Textured Surfaces (Springer, 2014).

    Book  Google Scholar 

  32. 32

    Xu, W., Lan, Z., Peng, B. L., Wen, R. F. & Ma, X. H. Effect of nanostructures on the nucleus wetting modes during water vapor condensation: from individual groove to nano-array surface. RSC Adv. 6, 7923–7932 (2016).

    CAS  Article  Google Scholar 

  33. 33

    Rykaczewski, K. et al. Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Langmuir 29, 881–891 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Liu, F., Ghigliotti, G., Feng, J. J. & Chen, C. H. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. J. Fluid Mech. 752, 39–65 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Cavalli, A. et al. Electrically induced drop detachment and ejection. Phys. Fluids 28, 022101 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Direction Générale de l’Armement (DGA) for contributing to the financial support, R.-M. Sauvage for her constant interest, and Thales for cofunding this project. Research carried out at Brookhaven National Laboratory is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704 and used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility. We finally thank R. Labbé for help in the design of experiments, and M.-S.-L. Lee and B. Loiseaux from Thales Research and Technology for many fruitful discussions.

Author information

Affiliations

Authors

Contributions

T.Mouterde and D.Q. conceived the project, T.Mouterde, G.L., T.Midavaine., C.C. and D.Q. designed the project, G.L. and S.X. produced samples B1–3, A.C., A.R. and C.T.B. produced samples A and C, T.Mouterde and A.C. performed experiments and analyses, T.Mouterde, C.C. and D.Q. discussed the models, and T.Mouterde and D.Q. wrote the manuscript with inputs from all other authors.

Corresponding authors

Correspondence to Timothée Mouterde or David Quéré.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 577 kb)

Supplementary Information

Supplementary movie 1 (AVI 4683 kb)

Supplementary Information

Supplementary movie 2 (AVI 13670 kb)

Supplementary Information

Supplementary movie 3 (MP4 4292 kb)

Supplementary Information

Supplementary movie 4 (MP4 1128 kb)

Supplementary Information

Supplementary movie 5 (MP4 13745 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mouterde, T., Lehoucq, G., Xavier, S. et al. Antifogging abilities of model nanotextures. Nature Mater 16, 658–663 (2017). https://doi.org/10.1038/nmat4868

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing