Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlling the growth of multiple ordered heteromolecular phases by utilizing intermolecular repulsion


Metal/organic interfaces and their structural, electronic, spintronic and thermodynamic properties have been investigated intensively, aiming to improve and develop future electronic devices. In this context, heteromolecular phases add new design opportunities simply by combining different molecules. However, controlling the desired phases in such complex systems is a challenging task. Here, we report an effective way of steering the growth of a bimolecular system composed of adsorbate species with opposite intermolecular interactions—repulsive and attractive, respectively. The repulsive species forms a two-dimensional lattice gas, the density of which controls which crystalline phases are stable. Critical gas phase densities determine the constant-area phase diagram that describes our experimental observations, including eutectic regions with three coexisting phases. We anticipate the general validity of this type of phase diagram for binary systems containing two-dimensional gas phases, and also show that the density of the gas phase allows engineering of the interface structure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic models and LEED patterns for all five homomolecular and heteromolecular phases of CuPc and PTCDA that occur following adsorption on Ag(111) at 380 K, as a function of the initial CuPc coverage.
Figure 2: Deposition of CuPc on a 0.17 ML film of PTCDA on Ag(111) at 380 K.
Figure 3: Deposition of PTCDA on a 0.73 ML film of CuPc on Ag(111).
Figure 4: Phase diagram for PTCDA and CuPc homo- and heteromolecular structures in the submonolayer regime, as obtained from experiment and the thermodynamic model.
Figure 5: The role of the critical CuPc gas phase density in the eutectic regions.


  1. 1

    Lee, S., Moritz, W. & Scheffler, M. GaAs(001) surface under conditions of low As pressure: evidence for a novel surface geometry. Phys. Rev. Lett. 85, 3890–3893 (2000).

    CAS  Google Scholar 

  2. 2

    Schmidt, W. G. et al. InP(001)-(2x1) surface: a hydrogen stabilized structure. Phys. Rev. Lett. 90, 126101 (2003).

    CAS  Google Scholar 

  3. 3

    Guo, Q. et al. Adsorption of PTCDA on terraces and at steps sites of the KCl(100) surface. J. Phys. Chem. C 118, 29911–29918 (2014).

    CAS  Google Scholar 

  4. 4

    Schmidt, W. G. III-V compound semiconductor (001) surfaces. Appl. Phys. A 99, 89–99 (2002).

    Google Scholar 

  5. 5

    Hermann, A., Schmidt, W. G. & Bechstedt, F. Phenanthrenequinone adsorbed on Si(001): geometries, electronic properties, and optical response. J. Phys. Chem. B 109, 7928–7933 (2005).

    CAS  Google Scholar 

  6. 6

    Liu, Q. K. K., Moll, N., Scheffler, M. & Pehlke, E. Equilibrium shapes and energies of coherent strained InP islands. Phys. Rev. B 60, 17008–17015 (1999).

    CAS  Google Scholar 

  7. 7

    Stadtmüller, B. et al. Adsorption height alignment at heteromolecular hybrid interfaces. Phys. Rev. B 89, 161407 (2014).

    Google Scholar 

  8. 8

    Goiri, E. et al. Self-assembly of bicomponent molecular monolayers: adsorption height changes and their consequences. Phys. Rev. Lett. 112, 117602 (2014).

    CAS  Google Scholar 

  9. 9

    Martínez, J. I., Abad, E., Beltrán, J. I., Flores, F. & Ortega, J. Barrier height formation in organic blends/metal interfaces: case of tetrathiafulvalene-tetracyanoquinodimethane/Au(111). J. Chem. Phys. 139, 214706 (2013).

    Google Scholar 

  10. 10

    El-Sayed, A. et al. Understanding energy-level alignment in donor-acceptor/metal interfaces from core-level shifts. ACS Nano 7, 6914 (2013).

    CAS  Google Scholar 

  11. 11

    Chen, W. et al. Molecular orientation of 3, 4, 9, 10-perylene-tetracarboxylic-dianhydride thin films at organic heterojunction interfaces. Appl. Phys. Lett. 91, 114102 (2007).

    Google Scholar 

  12. 12

    Huang, H. et al. Molecular orientation of CuPc thin films on C60/Ag(111). Appl. Phys. Lett. 94, 163304 (2009).

    Google Scholar 

  13. 13

    Rotter, P. et al. Coupling between diffusion and orientation of pentacene molecules on an organic surface. Nat. Mater. 15, 397–400 (2016).

    CAS  Google Scholar 

  14. 14

    Kratzer, M. & Teichert, C. Thin film growth of aromatic rod-like molecules on graphene. Nanotechnology 27, 292001 (2016).

    CAS  Google Scholar 

  15. 15

    Gottfried, J. M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep. 70, 259–379 (2015).

    CAS  Google Scholar 

  16. 16

    Ueno, N. & Kera, S. Electron spectroscopy of functional organic thin films: deep insights into valence electronic structure in relation to charge transport property. Prog. Surf. Sci. 83, 490 (2008).

    CAS  Google Scholar 

  17. 17

    Hlawacek, G. et al. Characterization of step-edge barriers in organic thin-film growth. Science 321, 108–111 (2008).

    CAS  Google Scholar 

  18. 18

    Tseng, T.-C. et al. Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces. Nat. Chem. 2, 374–379 (2010).

    CAS  Google Scholar 

  19. 19

    Puschnig, P. et al. Reconstruction of molecular orbital densities from photoemission data. Science 326, 702–706 (2009).

    CAS  Google Scholar 

  20. 20

    Romaner, L. et al. Impact of bidirectional charge transfer and molecular distortions on the electronic structure of a metal-organic interface. Phys. Rev. Lett. 99, 256801 (2007).

    Google Scholar 

  21. 21

    Gonzalez-Lakunza, N. et al. Formation of dispersive hybrid bands at an organic-metal interface. Phys. Rev. Lett. 100, 156805 (2008).

    CAS  Google Scholar 

  22. 22

    Willenbockel, M. et al. Energy offsets within a molecular monolayer: the influence of the molecular environment. New J. Phys. 15, 033017 (2013).

    Google Scholar 

  23. 23

    Kröger, I. et al. Submonolayer growth of H2-phthalocyanine on Ag(111). Phys. Rev. B 86, 195412 (2012).

    Google Scholar 

  24. 24

    Kröger, I., Stadtmüller, B. & Kumpf, C. Submonolayer and multilayer growth of titaniumoxide-phthalocyanine on Ag(111). New J. Phys. 18, 113022 (2016).

    Google Scholar 

  25. 25

    Wießner, M. et al. Substrate-mediated band-dispersion of adsorbate molecular states. Nat. Commun. 4, 1514 (2013).

    Google Scholar 

  26. 26

    Willenbockel, M. et al. The interplay between interface structure, energy level alignment and chemical bonding strength at organic-metal interfaces. Phys. Chem. Chem. Phys. 17, 1530–1548 (2015).

    CAS  Google Scholar 

  27. 27

    Stadtmüller, B. et al. Orbital tomography for highly symmetric adsorbate systems. Europhys. Lett. 100, 26008 (2012).

    Google Scholar 

  28. 28

    Ziroff, J., Forster, F., Schöll, A., Puschnig, P. & Reinert, F. Hybridization of organic molecular orbitals with substrate states at interfaces: PTCDA on silver. Phys. Rev. Lett. 104, 233004 (2010).

    CAS  Google Scholar 

  29. 29

    Hauschild, A. et al. Normal-incidence x-ray standing-wave determination of the adsorption geometry of PTCDA on Ag(111): comparison of the ordered room-temperature and disordered low-temperature phases. Phys. Rev. B 81, 125432 (2010).

    Google Scholar 

  30. 30

    Duhm, S. et al. PTCDA on Au(111), Ag(111) and Cu(111): correlation of interface charge transfer to bonding distance. Org. Electron. 9, 111 (2008).

    CAS  Google Scholar 

  31. 31

    Tautz, F. S. Structure and bonding of large aromatic molecules on noble metal surfaces: the example of PTCDA. Prog. Surf. Sci. 82, 479–520 (2007).

    CAS  Google Scholar 

  32. 32

    Schwalb, C. H. et al. Time-resolved measurements of electron transfer processes at the PTCDA/Ag(111) interface. Eur. Phys. J. B 75, 23–30 (2010).

    CAS  Google Scholar 

  33. 33

    Romaner, L., Nabok, D., Puschnig, P., Zojer, E. & Ambrosch-Draxl, C. Theoretical study of PTCDA adsorbed on the coinage metal surfaces, Ag(111), Au(111) and Cu(111). New J. Phys. 11, 053010 (2009).

    Google Scholar 

  34. 34

    Hill, I. G., Milliron, D., Schwartz, J. & Kahn, A. Organic semiconductor interfaces: electronic structure and transport properties. Appl. Surf. Sci. 166, 354–362 (2000).

    CAS  Google Scholar 

  35. 35

    Stadtmüller, B. et al. Modifying the surface of a Rashba-split Pb-Ag alloy using tailored metal-organic bonds. Phys. Rev. Lett. 117, 096805 (2016).

    Google Scholar 

  36. 36

    Kröger, I. et al. Modeling intermolecular interactions of physisorbed organic molecules using pair potential calculations. J. Chem. Phys. 135, 234703 (2011).

    Google Scholar 

  37. 37

    Kleimann, C., Stadtmüller, B., Schröder, S. & Kumpf, C. Electrostatic interaction and commensurate registry at the heteromolecular F16CuPc-CuPc interface. J. Phys. Chem. C 118, 1652–1660 (2014).

    CAS  Google Scholar 

  38. 38

    Schwarz, D., Henneke, C. & Kumpf, C. Towards functionalization of graphene: in situ study of the nucleation of copper-phthalocyanine on graphene. New J. Phys. 18, 023034 (2016).

    Google Scholar 

  39. 39

    Kröger, I. et al. Submonolayer growth of copper-phthalocyanine on Ag(111). New J. Phys. 12, 083038 (2010).

    Google Scholar 

  40. 40

    Glöckler, K. et al. Highly ordered structures and submolecular scanning tunnelling microscopy contrast of PTCDA and DM-PBDCI monolayers on Ag(111) and Ag(110). Surf. Sci. 405, 1–20 (1998).

    Google Scholar 

  41. 41

    Kilian, L., Umbach, E. & Sokolowski, M. Molecular beam epitaxy of organic films investigated by high resolution low energy electron diffraction (SPA-LEED): 3,4,9,10-perylenetetracarboxylicacid-dianhydride (PTCDA) on Ag(111). Surf. Sci. 573, 359–378 (2004).

    CAS  Google Scholar 

  42. 42

    Stadtmüller, B. et al. Unexpected interplay of bonding height and energy level alignment at heteromolecular hybrid interfaces. Nat. Commun. 5, 3685 (2014).

    Google Scholar 

  43. 43

    Stadtmüller, B., Schröder, S. & Kumpf, C. Heteromolecular metal-organic interfaces: electronic and structural fingerprints of chemical bonding. J. Electron. Spectrosc. Relat. Phenom. 204A, 80 (2015).

    Google Scholar 

  44. 44

    Stadtmüller, B., Henneke, C., Soubatch, S., Tautz, F. S. & Kumpf, C. Tailoring metal-organic hybrid interfaces: heteromolecular structures with varying stoichiometry on Ag(111). New J. Phys. 17, 023046 (2015).

    Google Scholar 

  45. 45

    Duden, T., Thust, A., Kumpf, C. & Tautz, F. S. Focal-series reconstruction in low energy electron microscopy. Microsc. Microanal. 20, 968–973 (2014).

    CAS  Google Scholar 

  46. 46

    Sauthoff, G. Intermetallics (Wiley-VCH, 1995).

    Google Scholar 

  47. 47

    Huang, H., Huang, Y., Pflaum, J., Wee, A. & Chen, W. Nanoscale phase separation of a binary molecular system of copper phthalocyanine and di-indenoperylene on Ag(111). Appl. Phys. Lett. 95, 263309 (2009).

    Google Scholar 

  48. 48

    Huang, Y. L. et al. Tunable two-dimensional binary molecular networks. Small 6, 70–75 (2010).

    CAS  Google Scholar 

  49. 49

    de Oteyza, D. G. et al. Balancing intermolecular and molecule substrate interactions in supramolecular assemblies. Adv. Funct. Mater. 19, 259–264 (2009).

    CAS  Google Scholar 

  50. 50

    de Oteyza, D. G. et al. Customized electronic coupling in self-assembled donor acceptor nanostructures. Adv. Funct. Mater. 19, 3567–3573 (2009).

    CAS  Google Scholar 

  51. 51

    Schwarz, D., van Gastel, R., Zandvliet, H. J. W. & Poelsema, B. Phase transformations of 4,4’-biphenyldicarboxylic acid on Cu(001). Phys. Rev. B 85, 235419 (2012).

    Google Scholar 

  52. 52

    Marchetto, H. et al. Influence of substrate morphology on organic layer growth: PTCDA on Ag(111). Chem. Phys. 325, 178–184 (2006).

    CAS  Google Scholar 

  53. 53

    Marchetto, H. et al. Direct observation of epitaxial organic film growth: temperature-dependent growth mechanisms and metastability. Phys. Chem. Chem. Phys. 17, 29150–29160 (2015).

    CAS  Google Scholar 

  54. 54

    Schwarz, D., van Gastel, R., Zandvliet, H. J. W. & Poelsema, B. Size fluctuations of near critical nuclei and Gibbs free energy for nucleation of BDA on Cu(001). Phys. Rev. Lett. 109, 016101 (2012).

    Google Scholar 

  55. 55

    Schwarz, D., van Gastel, R., Zandvliet, H. J. W. & Poelsema, B. Growth anomalies in supramolecular networks: 4,4’-biphenyldicarboxylic acid on Cu(001). Phys. Rev. Lett. 110, 076101 (2013).

    Google Scholar 

  56. 56

    Bauer, E. The resolution of the low energy electron reflection microscope. Ultramicroscopy 17, 51–56 (1985).

    CAS  Google Scholar 

  57. 57

    Bauer, E. Surface Microscopy with Low Energy Electrons (Springer, 2014).

    Google Scholar 

  58. 58

    Tromp, R. M. et al. A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design. Ultramicroscopy 110, 852–861 (2010).

    CAS  Google Scholar 

Download references

Author information




C.H. and C.K. conceived and designed this research project. C.H., J.F. and D.S. performed the experiments and C.H. analysed the data. C.H., C.K. and F.S.T. developed the thermodynamic model on which the interpretation of the phase diagram is based, and wrote the paper.

Corresponding author

Correspondence to Christian Kumpf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 376 kb)

Supplementary Information

Supplementary movie 1 (AVI 2641 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henneke, C., Felter, J., Schwarz, D. et al. Controlling the growth of multiple ordered heteromolecular phases by utilizing intermolecular repulsion. Nature Mater 16, 628–633 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing