Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation


Crystallographic imperfections significantly alter material properties and their response to external stimuli, including solute-induced phase transformations. Despite recent progress in imaging defects using electron and X-ray techniques, in situ three-dimensional imaging of defect dynamics remains challenging. Here, we use Bragg coherent diffractive imaging to image defects during the hydriding phase transformation of palladium nanocrystals. During constant-pressure experiments we observe that the phase transformation begins after dislocation nucleation close to the phase boundary in particles larger than 300 nm. The three-dimensional phase morphology suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than to the core–shell model commonly assumed. We substantiate this using three-dimensional phase field modelling, demonstrating how phase morphology affects the critical size for dislocation nucleation. Our results reveal how particle size and phase morphology affects transformations in the PdH system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic of strain energy and size effects on nanoparticle thermodynamics.
Figure 2: Displacement field and Bragg electron density evolution during hydrogen exposure.
Figure 3: Phase distribution effects on the strain energy for a particle of the same shape and size as in Fig. 2.
Figure 4: Ensemble Pd behaviour at fixed hydrogen partial pressure.
Figure 5: Determining the transformation pressure as a function of particle size.


  1. 1

    Cahn, J. W. & Larché, F. A simple model for coherent equilibrium. Acta Metall. 32, 1915–1923 (1984).

    CAS  Article  Google Scholar 

  2. 2

    Schwarz, R. B. & Khachaturyan, A. G. Thermodynamics of open two-phase systems with coherent interfaces. Phys. Rev. Lett. 74, 2523–2526 (1995).

    CAS  Article  Google Scholar 

  3. 3

    Pundt, A. & Kirchheim, R. Hydrogen in metals: Microstructural aspects. 36, 555–608 (2006).

  4. 4

    Cogswell, D. A. & Bazant, M. Z. Theory of coherent nucleation in phase-separating nanoparticles. Nano Lett. 13, 3036–3041 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Welland, M. J., Karpeyev, D., O’Connor, D. T. & Heinonen, O. Miscibility gap closure, interface morphology, and phase microstructure of 3D LixFePO4 nanoparticles from surface wetting and coherency strain. ACS Nano 9, 9757–9771 (2015).

    CAS  Article  Google Scholar 

  6. 6

    Manchester, F. D., San-Martin, A. & Pitre, J. M. The H–Pd (hydrogen–palladium) system. 15, 62–83 (1994).

  7. 7

    Jamieson, H. C., Weatherly, G. C. & Manchester, F. D. The β → α phase transformation in palladium-hydrogen alloys. J. Less-Common Met. 50, 85–102 (1976).

    CAS  Article  Google Scholar 

  8. 8

    Flanagan, T. B. & Oates, W. A. The palladium–hydrogen system. Annu. Rev. Mater. Res. 21, 269–304 (1991).

    CAS  Article  Google Scholar 

  9. 9

    Schwarz, R. B. & Khachaturyan, A. G. Thermodynamics of open two-phase systems with coherent interfaces: application to metal–hydrogen systems. Acta Mater. 54, 313–323 (2006).

    CAS  Google Scholar 

  10. 10

    Voorhees, P. W. & Johnson, W. C. The thermodynamics of elastically stressed crystals. Solid State Phys. 59, 1–201 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Baldi, A., Narayan, T. C., Koh, A. L. & Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 13, 1143–1148 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Griessen, R., Strohfeldt, N. & Giessen, H. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nat. Mater. 15, 1–7 (2015).

    Google Scholar 

  13. 13

    Syrenova, S. et al. Hydride formation thermodynamics and hysteresis in individual Pd nanocrystals with different size and shape. Nat. Mater. 14, 1–10 (2015).

    Article  Google Scholar 

  14. 14

    Bardhan, R. et al. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nat. Mater. 12, 905–912 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Ulvestad, A. et al. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles. Nat. Commun. 6, 10092 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Hÿtch, M., Putaux, J. & Pénisson, J. Measurement of the displacement field of dislocations to 0.03 Å by electron microscopy. Nature 423, 270–273 (2003).

    Article  Google Scholar 

  17. 17

    Abbey, B. et al. Mapping the dislocation sub-structure of deformed polycrystalline Ni by scanning microbeam diffraction topography. Scr. Mater. 64, 884–887 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Lang, A. R. Direct observation of individual dislocations by x-ray diffraction. J. Appl. Phys. 29, 597–598 (1958).

    CAS  Article  Google Scholar 

  19. 19

    Taton, T. A. & Norris, D. J. Defective promise in photonics. Nature 416, 685–686 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Seebauer, E. G. & Noh, K. W. Trends in semiconductor defect engineering at the nanoscale. Mater. Sci. Eng. R 70, 151–168 (2010).

    Article  Google Scholar 

  21. 21

    Lawrence, N. J. et al. Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation. Nano Lett. 11, 2666–2671 (2011).

    CAS  Article  Google Scholar 

  22. 22

    Shin, N., Chi, M., Howe, J. Y. & Filler, M. A. Rational defect introduction in silicon nanowires. Nano Lett. 13, 1928–1933 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Robinson, I. & Harder, R. Coherent X-ray diffraction imaging of strain at the nanoscale. Nat. Mater. 8, 291–298 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Newton, M. C., Leake, S. J., Harder, R. & Robinson, I. K. Three-dimensional imaging of strain in a single ZnO nanorod. Nat. Mater. 9, 120–124 (2010).

    CAS  Article  Google Scholar 

  25. 25

    Miao, J. W., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    CAS  Article  Google Scholar 

  26. 26

    Marchesini, S. A unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 78, 11301 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Marchesini, S., He, H. & Chapman, H. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101 (2003).

    Article  Google Scholar 

  28. 28

    Chapman, H., Barty, A. & Marchesini, S. High-resolution ab initio three-dimensional x-ray diffraction microscopy. JOSA A 23, 1179–1200 (2006).

    Article  Google Scholar 

  29. 29

    Ulvestad, A., Clark, J. N., Harder, R., Robinson, I. K. & Shpyrko, O. G. 3D imaging of twin domain defects in gold nanoparticles. Nano Lett. 15, 4066–4070 (2015).

    CAS  Article  Google Scholar 

  30. 30

    Watari, M. et al. Differential stress induced by thiol adsorption on facetted nanocrystals. Nat. Mater. 10, 862–866 (2011).

    CAS  Article  Google Scholar 

  31. 31

    Ulvestad, A. et al. Single particle nanomechanics in operando batteries via lensless strain mapping. Nano Lett. 14, 5123–5127 (2014).

    CAS  Article  Google Scholar 

  32. 32

    Kracker, M., Wisniewski, W. & Rüssel, C. Textures of Au, Pt and Pd/PdO nanoparticles thermally dewetted from thin metal layers on fused silica. RSC Adv. 4, 48135–48143 (2014).

    CAS  Article  Google Scholar 

  33. 33

    Aranda, M. A. G. et al. Coherent X-ray diffraction investigation of twinned microcrystals. J. Synchrotron Radiat. 17, 751–760 (2010).

    CAS  Article  Google Scholar 

  34. 34

    Dupraz, M., Beutier, G., Rodney, D., Mordehai, D. & Verdier, M. Signature of dislocations and stacking faults of face-centred cubic nanocrystals in coherent X-ray diffraction patterns: a numerical study. J. Appl. Crystallogr. 48, 621–644 (2015).

    CAS  Article  Google Scholar 

  35. 35

    Takahashi, Y. et al. Bragg x-ray ptychography of a silicon crystal: visualization of the dislocation strain field and the production of a vortex beam. Phys. Rev. B 87, 121201 (2013).

    Article  Google Scholar 

  36. 36

    Clark, J. N. et al. Three-dimensional imaging of dislocation dynamics during crystal growth and dissolution. Nat. Mater. 14, 780–784 (2015).

    CAS  Article  Google Scholar 

  37. 37

    Goldstein, R. M., Zebker, H. A. & Werner, C. L. Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23, 713–720 (1988).

    Article  Google Scholar 

  38. 38

    Narayan, T. C., Baldi, A., Koh, A. L., Sinclair, R. & Dionne, J. A. Reconstructing solute-induced phase transformations within individual nanocrystals. Nat. Mater. (2016).

  39. 39

    Meethong, N., Huang, H.-Y. S., Speakman, S. A., Carter, W. C. & Chiang, Y.-M. Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv. Funct. Mater. 17, 1115–1123 (2007).

    CAS  Article  Google Scholar 

  40. 40

    Narayan, T. et al. Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles. Nat. Commun. 8, 14020 (2017).

    CAS  Article  Google Scholar 

  41. 41

    Min, B. K., Santra, A. K. & Goodman, D. W. Understanding silica-supported metal catalysts: Pd/silica as a case study. Catal. Today 85, 113–124 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Larsson, E. M., Edvardsson, M. E. M., Langhammer, C., Zorić, I. & Kasemo, B. A combined nanoplasmonic and electrodeless quartz crystal microbalance setup. Rev. Sci. Instrum. 80, 125105 (2009).

    Article  Google Scholar 

  43. 43

    Yang, W. et al. Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure. Nat. Commun. 4, 1680 (2013).

    CAS  Article  Google Scholar 

  44. 44

    Clark, J. N., Huang, X., Harder, R. & Robinson, I. K. High-resolution three-dimensional partially coherent diffraction imaging. Nat. Commun. 3, 993 (2012).

    CAS  Article  Google Scholar 

  45. 45

    Chen, C.-C., Miao, J., Wang, C. & Lee, T. Application of optimization technique to noncrystalline x-ray diffraction microscopy: guided hybrid input-output method. Phys. Rev. B 76, 64113 (2007).

    Article  Google Scholar 

  46. 46

    Hull, D. & Bacon, D. J. Introduction to Dislocations (Butterworth-Heinemann, 2011).

    Google Scholar 

  47. 47

    Galeev, T. K., Bulgakov, N. N., Savelieva, G. A. & Popova, N. M. Surface properties of platinum and palladium. React. Kinet. Catal. Lett. 14, 61–65 (1980).

    CAS  Article  Google Scholar 

Download references


This research (X-ray imaging experiment) used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Design of the hydriding phase transformation experiment and image analysis was supported by the DOE Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering. We thank the staff at the Advanced Photon Source for their support.

Author information




A.U. and E.M. designed the experiment. M.J.W. performed the phase field simulations. A.U., G.B.S. and M.J.H. performed the ensemble experiments. A.U., W.C., Y.L., E.M. and J.W.K. performed the BCDI measurement. Y.L. synthesized the Pd nanoparticles. All authors interpreted the results and contributed to writing the manuscript.

Corresponding author

Correspondence to A. Ulvestad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3301 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ulvestad, A., Welland, M., Cha, W. et al. Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation. Nature Mater 16, 565–571 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing