Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-dimensional assemblies from crystallizable homopolymers with charged termini

Abstract

The creation of shaped, uniform and colloidally stable two-dimensional (2D) assemblies by bottom-up methods represents a challenge of widespread current interest for a variety of applications. Herein, we describe the utilization of surface charge to stabilize self-assembled planar structures that are formed from crystallizable polymer precursors by a seeded growth approach. Addition of crystallizable homopolymers with charged end-groups to seeds generated by the sonication of block copolymer micelles with crystalline cores yields uniform platelet micelles with controlled dimensions. Significantly, the seeded growth approach is characterized by a morphological memory effect whereby the origin of the seed, which can involve a quasi-hexagonal or rectangular 2D platelet precursor, dictates the observed 2D platelet shape. This new strategy is illustrated using two different polymer systems, and opens the door to the construction of 2D hierarchical structures with broad utility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of homopolymers used for seeded growth.
Figure 2: 2D platelets with different shapes from the seeded growth of PFS20[PPh2Me]I.
Figure 3: Formation of platelet block comicelles of different shape.
Figure 4: SAED patterns for platelet block comicelles.
Figure 5: Uniform diamond platelet micelles prepared by seeded growth of PLLA24[PPh2 Me]I.

Similar content being viewed by others

References

  1. Zhang, X. & Xie, Y. Recent advances in free-standing two-dimensional crystals with atomic thickness: design, assembly and transfer strategies. Chem. Soc. Rev. 42, 8187–8199 (2013).

    Article  CAS  Google Scholar 

  2. Boott, C. E., Nazemi, A. & Manners, I. Synthetic covalent and non-covalent 2D materials. Angew. Chem. Int. Ed. 54, 13876–13894 (2015).

    Article  CAS  Google Scholar 

  3. Zhuang, X., Mai, Y., Wu, D., Zhang, F. & Feng, X. Two-dimensional soft nanomaterials: a fascinating world of materials. Adv. Mater. 27, 403–427 (2015).

    Article  CAS  Google Scholar 

  4. Rizis, G., van de Ven, T. G. M. & Eisenberg, A. “Raft” formation by two-dimensional self-assembly of block copolymer rod micelles in aqueous solution. Angew. Chem. Int. Ed. 53, 9000–9003 (2014).

    Article  CAS  Google Scholar 

  5. Yang, J.-X. et al. Hydrogen-bonding-mediated fragmentation and reversible self-assembly of crystalline micelles of block copolymer. Macromolecules 49, 367–372 (2016).

    Article  CAS  Google Scholar 

  6. Lee, I.-H. et al. Nanostar and nanonetwork crystals fabricated by in situ nanoparticlization of fully conjugated polythiophene diblock copolymers. J. Am. Chem. Soc. 135, 17695–17698 (2013).

    Article  CAS  Google Scholar 

  7. Yin, L. & Hillmyer, M. A. Disklike micelles in water from polyethylene-containing diblock copolymers. Macromolecules 44, 3021–3028 (2011).

    Article  CAS  Google Scholar 

  8. Keller, A. Polymer single crystals. Polymer 3, 393–421 (1962).

    Article  CAS  Google Scholar 

  9. Geil, P. Polymer Single Crystals (Robert Krieger Pub. Huntington, NY Press, 1973).

    Google Scholar 

  10. Li, B. & Li, C. Y. Immobilizing Au nanoparticles with polymer single crystals, patterning and asymmetric functionalization. J. Am. Chem. Soc. 129, 12–13 (2007).

    Article  CAS  Google Scholar 

  11. Dong, B., Zhou, T., Zhang, H. & Li, C. Y. Directed self-assembly of nanoparticles for nanomotors. ACS Nano 7, 5192–5198 (2013).

    Article  CAS  Google Scholar 

  12. Chen, W. Y. et al. “Chemically shielded” poly(ethylene oxide) single crystal growth and construction of channel-wire arrays with chemical and geometric recognitions on a submicrometer scale. Macromolecules 37, 5292–5299 (2004).

    Article  CAS  Google Scholar 

  13. Zheng, J. X. et al. Onsets of tethered chain overcrowding and highly stretched brush regime via crystalline-amorphous diblock copolymers. Macromolecules 39, 641–650 (2006).

    Article  CAS  Google Scholar 

  14. Yu, B., Jiang, X. & Yin, J. Size-tunable nanosheets by the crystallization-driven 2D self-assembly of hyperbranched poly(ether amine) (hPEA). Macromolecules 47, 4761–4768 (2014).

    Article  CAS  Google Scholar 

  15. Hailes, R. L. N., Oliver, A. M., Gwyther, J., Whittell, G. R. & Manners, I. Polyferrocenylsilanes: synthesis, properties, and applications. Chem. Soc. Rev. 45, 5358–5407 (2016).

    Article  CAS  Google Scholar 

  16. Hudson, Z. M. et al. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 6, 893–898 (2014).

    Article  CAS  Google Scholar 

  17. Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–701 (2016).

    Article  CAS  Google Scholar 

  18. Gilroy, J. B. et al. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2, 566–570 (2010).

    Article  CAS  Google Scholar 

  19. Petzetakis, N., Dove, A. P. & O’Reilly, R. K. Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers. Chem. Sci. 2, 955–960 (2011).

    Article  CAS  Google Scholar 

  20. Schmelz, J., Karg, M., Hellweg, T. & Schmalz, H. General pathway toward crystalline-core micelles with tunable morphology and corona segregation. ACS Nano 5, 9523–9534 (2011).

    Article  CAS  Google Scholar 

  21. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    Article  CAS  Google Scholar 

  22. Schmelz, J., Schedl, A. E., Steinlein, C., Manners, I. & Schmalz, H. Length control and block-type architectures in worm-like micelles with polyethylene cores. J. Am. Chem. Soc. 134, 14217–14225 (2012).

    Article  CAS  Google Scholar 

  23. Qian, J. et al. Uniform, high aspect ratio fiber-like micelles and block co-micelles with a crystalline π-conjugated polythiophene core by self-seeding. J. Am. Chem. Soc. 136, 4121–4124 (2014).

    Article  CAS  Google Scholar 

  24. Qiu, H. et al. Branched micelles by living crystallization-driven block copolymer self-assembly under kinetic control. J. Am. Chem. Soc. 137, 2375–2385 (2015).

    Article  CAS  Google Scholar 

  25. Qiu, H., Cambridge, G., Winnik, M. A. & Manners, I. Multi-armed micelles and block co-micelles via crystallization-driven self-assembly with homopolymer nanocrystals as initiators. J. Am. Chem. Soc. 135, 12180–12183 (2013).

    Article  CAS  Google Scholar 

  26. Gaedt, T., Ieong, N. S., Cambridge, G., Winnik, M. A. & Manners, I. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations. Nat. Mater. 8, 144–150 (2009).

    Article  CAS  Google Scholar 

  27. Gilroy, J. B. et al. Probing the structure of the crystalline core of field-aligned, monodisperse, cylindrical polyisoprene-block-polyferrocenylsilane micelles in solution using synchrotron small- and wide-angle X-ray scattering. J. Am. Chem. Soc. 133, 17056–17062 (2011).

    Article  CAS  Google Scholar 

  28. Hanaor, D., Michelazzi, M., Leonelli, C. & Sorrell, C. C. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2 . J. Eur. Ceram. Soc. 32, 235–244 (2012).

    Article  CAS  Google Scholar 

  29. Xu, J., Ma, Y., Hu, W., Rehahn, M. & Reiter, G. Cloning polymer single crystals through self-seeding. Nat. Mater. 8, 348–353 (2009).

    Article  CAS  Google Scholar 

  30. Tan, C. & Zhang, H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 137, 12162–12174 (2015).

    Article  CAS  Google Scholar 

  31. Huang, X. et al. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013).

    Article  Google Scholar 

  32. Hsiao, M.-S., Yusoff, S. F. M., Winnik, M. A. & Manners, I. Crystallization-driven self-assembly of block copolymers with a short crystallizable core-forming segment: controlling micelle morphology through the influence of molar mass and solvent selectivity. Macromolecules 47, 2361–2372 (2014).

    Article  CAS  Google Scholar 

  33. Passaglia, E. & Khoury, F. Crystal growth kinetics and the lateral habits of polyethylene crystals. Polymer 25, 631–644 (1984).

    Article  CAS  Google Scholar 

  34. Chen, Z. et al. Structure of poly(ferrocenyldimethylsilane) in electrospun nanofibers. Macromolecules 34, 6156–6158 (2001).

    Article  CAS  Google Scholar 

  35. Papkov, V. S. et al. Crystalline structure of some poly(ferrocenylenedialkylsilylenes). Macromolecules 33, 7107–7115 (2000).

    Article  CAS  Google Scholar 

  36. Li, X. et al. “Cross” supermicelles via the hierarchical assembly of amphiphilic cylindrical triblock comicelles. J. Am. Chem. Soc. 138, 4087–4095 (2016).

    Article  CAS  Google Scholar 

  37. He, W.-N. & Xu, J.-T. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci. 37, 1350–1400 (2012).

    Article  CAS  Google Scholar 

  38. Sun, L. et al. Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation. Nat. Commun. 5, 5746 (2014).

    CAS  Google Scholar 

  39. Sun, L. et al. Core functionalization of semi-crystalline polymeric cylindrical nanoparticles using photo-initiated thiol-ene radical reactions. Polym. Chem. 7, 2337–2341 (2016).

    Article  CAS  Google Scholar 

  40. Ni, Y., Rulkens, R. & Manners, I. Transition metal-based polymers with controlled architectures: well-defined poly(ferrocenylsilane) homopolymers and multiblock copolymers via the living anionic ring-opening polymerization of silicon-bridged [1] ferrocenophanes. J. Am. Chem. Soc. 118, 4102–4114 (1996).

    Article  CAS  Google Scholar 

  41. Wang, H., Winnik, M. A. & Manners, I. Synthesis and self-assembly of poly(ferrocenyldimethylsilane-b-2-vinylpyridine) diblock copolymers. Macromolecules 40, 3784–3789 (2007).

    Article  CAS  Google Scholar 

  42. McGrath, N. et al. Synthesis and crystallization-driven solution self-assembly of polyferrocenylsilane diblock copolymers with polymethacrylate corona-forming blocks. Polym. Chem. 5, 1923–1929 (2014).

    Article  CAS  Google Scholar 

  43. Pratt, R. C. et al. Exploration, optimization, and application of supramolecular thiourea-amine catalysts for the synthesis of lactide (co)polymers. Macromolecules 39, 7863–7871 (2006).

    Article  CAS  Google Scholar 

  44. McNulty, J. & Keskar, K. Discovery of a robust and efficient homogeneous silver(I) catalyst for the cycloaddition of azides onto terminal alkynes. Eur. J. Org. Chem. 2012, 5462–5470 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

X.H., A.N. and X.L. are grateful to the European Union (EU) for Marie Curie Postdoctoral Fellowships. C.E.B. thanks the Bristol Chemical Synthesis Centre for Doctoral Training, funded by the Engineering and Physical Sciences Research Council (EPSRC), for a PhD studentship. PeakForce atomic force microscopy was carried out in the Chemical Imaging Facility, University of Bristol with equipment funded by EPSRC. G. R. Whittell is thanked for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

X.H. and I.M. conceived the project with input from A.N. X.H. synthesized the polymers, and performed the experiments. X.H. and C.E.B. performed the LSCM imaging. X.H. and R.L.H. performed the AFM analysis. X.L. provided the PFS25-b-P2VP250 seeds. M.-S.H. performed the imaging and analysis of ED and EDX mapping. X.H., M.-S.H. and I.M. prepared the manuscript with input from all the other authors. The project was supervised by I.M.

Corresponding author

Correspondence to Ian Manners.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8463 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Hsiao, MS., Boott, C. et al. Two-dimensional assemblies from crystallizable homopolymers with charged termini. Nature Mater 16, 481–488 (2017). https://doi.org/10.1038/nmat4837

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4837

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing