The path towards sustainable energy

Abstract

Civilization continues to be transformed by our ability to harness energy beyond human and animal power. A series of industrial and agricultural revolutions have allowed an increasing fraction of the world population to heat and light their homes, fertilize and irrigate their crops, connect to one another and travel around the world. All of this progress is fuelled by our ability to find, extract and use energy with ever increasing dexterity. Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Renewable energy future.
Figure 2: Photovoltaic technologies.
Figure 3: Materials for batteries.
Figure 4: Materials for catalysis.

References

  1. 1

    International Energy Outlook 2016 (US Energy Information Administration, 2016).

  2. 2

    Butler, J. H. & Montzka, S. A. The NOAA Annual Greenhouse Gas Index (National Oceanic & Atmospheric Administration, 2016); http://go.nature.com/2fWAEjv

    Google Scholar 

  3. 3

    Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–245 (2015).

    Google Scholar 

  4. 4

    IPCC Climate Change 2014: Synthesis Report (eds Pachauri, R. K. & Meyer, L. A.) (Cambridge Univ. Press, 2015).

  5. 5

    Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    CAS  Google Scholar 

  6. 6

    Boot-Handford, M. E. et al. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189 (2014).

    CAS  Google Scholar 

  7. 7

    Brédas, J.-L., Sargent, E. H. & Scholes, G. D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35–44 (2017).

    Google Scholar 

  8. 8

    Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2017).

    Google Scholar 

  9. 9

    Grey, C. P. & Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 16, 45–56 (2017).

    Google Scholar 

  10. 10

    Montoya, J. H. et al. Materials for solar fuels and chemicals. Nat. Mater. 16, 70–81 (2017).

    Google Scholar 

  11. 11

    Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    CAS  Google Scholar 

  12. 12

    PVX Spot Market Price Index Solar PV Modules (SolarServer, 2016); http://go.nature.com/2fHydjV

  13. 13

    Office of Energy Efficiency and Renewable Energy SunShot Vision Study (US Department of Energy, 2012); http://go.nature.com/2geV1LO

  14. 14

    Shahan, Z. Low solar prices scaring companies away from solar auctions. CleanTechnica (27 July 2016); http://go.nature.com/2fHsfPO

    Google Scholar 

  15. 15

    SunShot 2030 White Paper (US Department of Energy, 2016); http://go.nature.com/2g1g8xW

  16. 16

    Photovoltaics Report (Fraunhofer Institute for Solar Energy Systems, 2016); http://go.nature.com/2eusg7r

  17. 17

    Zhu, J., Hsu, C.-M., Yu, Z., Fan, S. & Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010).

    CAS  Google Scholar 

  18. 18

    Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    CAS  Google Scholar 

  19. 19

    Seo, J., Noh, J. H. & Seok, S. I. Rational strategies for efficient perovskite solar cells. Acc. Chem. Res. 49, 562–572 (2016).

    CAS  Google Scholar 

  20. 20

    Nishimoto, S. & Bhushan, B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv. 3, 671–690 (2013).

    CAS  Google Scholar 

  21. 21

    Zhang, P. & Lv, F. Y. A review of the recent advances in superhydrophobic surfaces and the emerging energy-related applications. Energy 82, 1068–1087 (2015).

    Google Scholar 

  22. 22

    Gogolides, E., Ellinas, K. & Tserepi, A. Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectron. Eng. 132, 135–155 (2015).

    CAS  Google Scholar 

  23. 23

    EV Everywhere Grand Challenge Blueprint (US Department of Energy, 2013); http://go.nature.com/2gRubKz

  24. 24

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    CAS  Google Scholar 

  25. 25

    Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31–35 (2008).

    CAS  Google Scholar 

  26. 26

    Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–6 (2009).

    CAS  Google Scholar 

  27. 27

    Lin, D. et al. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotech. 11, 626–632 (2016).

    CAS  Google Scholar 

  28. 28

    Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–35 (2013).

    CAS  Google Scholar 

  29. 29

    Li, X., Zhang, H., Mai, Z., Zhang, H. & Vankelecom, I. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ. Sci. 4, 1147 (2011).

    CAS  Google Scholar 

  30. 30

    Li, B. et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015).

    CAS  Google Scholar 

  31. 31

    Yang, Y., Zheng, G. & Cui, Y. A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ. Sci. 6, 1552–1558 (2013).

    CAS  Google Scholar 

  32. 32

    Kim, Y. J., Wu, W., Chun, S.-E., Whitacre, J. F. & Bettinger, C. J. Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices. Proc. Natl Acad. Sci. USA 110, 20912–7 (2013).

    CAS  Google Scholar 

  33. 33

    Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotech. 6, 147–150 (2011).

    CAS  Google Scholar 

  34. 34

    Hinnemann, B. et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 127, 5308–5309 (2005).

    CAS  Google Scholar 

  35. 35

    Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  Google Scholar 

  36. 36

    Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    CAS  Google Scholar 

  37. 37

    Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339 LP-1343 (2014).

    Google Scholar 

  38. 38

    Wang, H. et al. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc. Natl Acad. Sci. USA 110, 19701–19706 (2013).

    CAS  Google Scholar 

  39. 39

    Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016).

    CAS  Google Scholar 

  40. 40

    Gupta, K., Bersani, M. & Darr, J. A. Highly efficient electro-reduction of CO2 to formic acid by nano-copper. J. Mater. Chem. A 4, 13786–13794 (2016).

    CAS  Google Scholar 

  41. 41

    Kuhl, K. P. et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014).

    CAS  Google Scholar 

  42. 42

    Goeppert, A., Czaun, M., Jones, J.-P., Surya Prakash, G. K. & Olah, G. A. Recycling of carbon dioxide to methanol and derived products – closing the loop. Chem. Soc. Rev. 43, 7995–8048 (2014).

    CAS  Google Scholar 

  43. 43

    Studt, F. et al. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014).

    CAS  Google Scholar 

  44. 44

    Qiao, J. et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 43, 631–675 (2014).

    CAS  Google Scholar 

  45. 45

    Bloch, E. D. et al. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites. Science 335, 1606 LP-1610 (2012).

    Google Scholar 

  46. 46

    Chu, S. Carbon capture and sequestration. Science 325, 1599 LP-1599 (2009).

    Google Scholar 

  47. 47

    IPCC Carbon Dioxide Capture and Storage (eds Metz, B et al.) (Cambridge Univ. Press, 2005).

  48. 48

    Cost and Performance Baseline for Fossil Energy Plants Volume 1: Bituminous Coal and Natural Gas to Electricity (US Department of Energy, 2013); http://go.nature.com/2gf13M7

  49. 49

    Mason, J. A. et al. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2, and H2O. J. Am. Chem. Soc. 137, 4787–4803 (2015).

    CAS  Google Scholar 

  50. 50

    Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

    CAS  Google Scholar 

  51. 51

    Chung, Y. G. et al. In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm. Sci. Adv. 2, e1600909 (2016).

    Google Scholar 

  52. 52

    Allam, R. J. et al. High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide Energy Procedia 37, 1135–1149 (2013).

    CAS  Google Scholar 

  53. 53

    D'Alessandro, D. M., Smit, B. & Long, J. R. Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. 49, 6058–6082 (2010).

    CAS  Google Scholar 

  54. 54

    Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    CAS  Google Scholar 

  55. 55

    Lee, S. W. et al. An electrochemical system for efficiently harvesting low-grade heat energy. Nat. Commun. 5, 3942 (2014).

    CAS  Google Scholar 

  56. 56

    Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    CAS  Google Scholar 

  57. 57

    Hsu, P.-C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).

    CAS  Google Scholar 

  58. 58

    Baetens, R., Jelle, B. P. & Gustavsen, A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Sol. Energ. Mat. Sol. Cells 94, 87–105 (2010).

    CAS  Google Scholar 

  59. 59

    Llordes, A., Garcia, G., Gazquez, J. & Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–326 (2013).

    CAS  Google Scholar 

  60. 60

    Iacopi, F., Van Hove, M., Charles, M. & Endo, K. Power electronics with wide bandgap materials: toward greener, more efficient technologies. MRS Bull. 40, 390–395 (2015).

    CAS  Google Scholar 

  61. 61

    Wide Bandgap Power Electronics Technology Assessment (US Department of Energy, 2015); http://go.nature.com/2gEWuJw

  62. 62

    Xie, X., Criddle, C. & Cui, Y. Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy Environ. Sci. 8, 3418–3441 (2015).

    CAS  Google Scholar 

  63. 63

    Sakimoto, K. K., Wong, A. B. & Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74 LP-77 (2015).

    Google Scholar 

  64. 64

    Current and Future Cost of Photovoltaics (Fraunhofer Institute for Solar Energy Systems, 2015); http://go.nature.com/2aYJCgc

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Steven Chu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nature Mater 16, 16–22 (2017). https://doi.org/10.1038/nmat4834

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing