Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering dissipation with phononic spectral hole burning

Abstract

Optomechanics, nano-electromechanics, and integrated photonics have brought about a renaissance in phononic device physics and technology. Central to this advance are devices and materials supporting ultra-long-lived photonic and phononic excitations that enable novel regimes of classical and quantum dynamics based on tailorable photon–phonon coupling. Silica-based devices have been at the forefront of such innovations for their ability to support optical excitations persisting for nearly 1 billion cycles, and for their low optical nonlinearity. While acoustic phonon modes can persist for a similar number of cycles in crystalline solids at cryogenic temperatures, it has not been possible to achieve such performance in silica, as silica becomes acoustically opaque at low temperatures. We demonstrate that these intrinsic forms of phonon dissipation are greatly reduced (by >90%) by nonlinear saturation using continuous drive fields of disparate frequencies. The result is a form of steady-state phononic spectral hole burning that produces a wideband transparency window with optically generated phonon fields of modest (nW) powers. We developed a simple model that explains both dissipative and dispersive changes produced by phononic saturation. Our studies, conducted in a microscale device, represent an important step towards engineerable phonon dynamics on demand and the use of glasses as low-loss phononic media.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modification of elastic properties by phononic spectral hole burning.
Figure 2: System and Brillouin scattering spectroscopy.
Figure 3: Phononic spectral hole burning experimental set-up, phenomenology, and results.
Figure 4: Modification of acoustic dissipation and dispersion by phononic spectral hole burning.
Figure 5: Acoustic quality factor with temperature and drive intensity in a system where absorption by acoustic atoms dominates dissipation (ΓR ≫ Γ0).

Similar content being viewed by others

References

  1. Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172–1176 (2008).

    Article  CAS  Google Scholar 

  2. Bochmann, J., Vainsencher, A., Awschalom, D. D. & Cleland, A. N. Nanomechanical coupling between microwave and optical photons. Nat. Phys. 9, 712–716 (2013).

    Article  CAS  Google Scholar 

  3. Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    Article  CAS  Google Scholar 

  4. Meenehan, S. M. et al. Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground state of motion. Phys. Rev. X 5, 041002 (2015).

    Google Scholar 

  5. Goryachev, M., Creedon, D. L., Galliou, S. & Tobar, M. E. Observation of Rayleigh phonon scattering through excitation of extremely high overtones in low-loss cryogenic acoustic cavities for hybrid quantum systems. Phys. Rev. Lett. 111, 085502 (2013).

    Article  Google Scholar 

  6. Shin, H. et al. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun. 4, 1944 (2013).

    Article  Google Scholar 

  7. Shin, H. et al. Control of coherent information via on-chip photonic–phononic emitter-receivers. Nat. Commun. 6, 6427 (2015).

    Article  CAS  Google Scholar 

  8. Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).

    Article  CAS  Google Scholar 

  9. Fiore, V. et al. Storing optical information as a mechanical excitation in a silica optomechanical resonator. Phys. Rev. Lett. 107, 133601 (2011).

    Article  Google Scholar 

  10. Weis, S. et al. Optomechanically induced transparency. Science 330, 1520–1523 (2010).

    Article  CAS  Google Scholar 

  11. Cheung, H. F. H., Patil, Y. S., Chang, L., Chakram, S. & Vengalattore, M. Nonlinear phonon interferometry at the Heisenberg limit. Preprint at http://arXiv.org/abs/1601.02324 (2016).

  12. Regal, C. A., Teufel, J. D. & Lehnert, K. W. Measuring nanomechanical motion with a microwave cavity interferometer. Nat. Phys. 4, 555–560 (2008).

    Article  CAS  Google Scholar 

  13. Kang, M. S., Nazarkin, A., Brenn, A. & Russell, P. S. J. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nat. Phys. 5, 276–280 (2009).

    Article  CAS  Google Scholar 

  14. Schliesser, A. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  Google Scholar 

  15. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–560 (2011).

    Article  CAS  Google Scholar 

  16. Phillips, W. A. Two-level states in glasses. Rep. Prog. Phys. 50, 1657–1708 (1987).

    Article  CAS  Google Scholar 

  17. Portis, A. M. Electronic structure of F centers: saturation of the electron spin resonance. Phys. Rev. 91, 1071–1078 (1953).

    Article  CAS  Google Scholar 

  18. Szabo, A. Observation of hole burning and cross relaxation effects in ruby. Phys. Rev. B 11, 4512–4517 (1975).

    Article  Google Scholar 

  19. Jessop, P. E., Muramoto, T. & Szabo, A. Optical hole burning in ruby. Phys. Rev. B 21, 926–936 (1980).

    Article  CAS  Google Scholar 

  20. Basche, T. & Moerner, W. E. Optical modification of a single impurity molecule in a solid. Nature 355, 335–337 (1992).

    Article  CAS  Google Scholar 

  21. Golding, B., Graebner, J. E., Halperin, B. I. & Schutz, R. J. Nonlinear phonon propagation in fused silica below 1 K. Phys. Rev. Lett. 30, 223–227 (1973).

    Article  CAS  Google Scholar 

  22. Golding, B., Graebner, J. E. & Schutz, R. J. Intrinsic decay lengths of quasimonochromatic phonons in a glass below 1 K. Phys. Rev. B 14, 1660–1662 (1976).

    Article  CAS  Google Scholar 

  23. Arnold, W., Hunklinger, S., Stein, S. & Dransfeld, K. Nonlinear ultrasonic attenuation in glasses. J. Non-Cryst. Solids 14, 192–200 (1974).

    Article  CAS  Google Scholar 

  24. Arnold, W. & Hunklinger, S. Experimental evidence for the direct interaction between two-level systems in glasses at very low temperatures. Solid State Commun. 17, 883–886 (1975).

    Article  Google Scholar 

  25. Arnold, W., Martinon, C. & Hunklinger, S. Direct experimental observation of spectral diffusion in vitreous silica at low temperatures. J. Phys. Colloq. 39, C6961–C6963 (1978).

    Article  Google Scholar 

  26. Black, J. L. & Halperin, B. I. Spectral diffusion in glasses at low temperatures. Phys. Rev. B 24, 813–816 (1977).

    Google Scholar 

  27. Behunin, R. O., Intravaia, F. & Rakich, P. T. Dimensional transformation of defect-induced noise, dissipation, and nonlinearity. Phys. Rev. B 93, 224110 (2016).

    Article  Google Scholar 

  28. Siegman, A. E. Lasers (Univ. Science Books, 1986).

    Google Scholar 

  29. Skinner, J. L. & Moerner, W. E. Structure and dynamics in solids as probed by optical spectroscopy. J. Phys. Chem. 100, 13251–13262 (1996).

    Article  CAS  Google Scholar 

  30. Jankowiak, R. & Small, G. J. Hole-burning spectroscopy and relaxation dynamics of amorphous solids at low temperatures. Science 237, 618–625 (1987).

    Article  CAS  Google Scholar 

  31. Moerner, W. E. (ed.) Persistent Spectral Hole-Burning: Science and Applications (Springer, 1988).

  32. Boyd, R. W. Nonlinear Optics 2nd edn (Academic, 2003).

    Google Scholar 

  33. Behunin, R. O. et al. Long-lived guided phonons in fiber by manipulating two-level systems. Preprint at http://arXiv.org/abs/1501.04248 (2015).

  34. Dragic, P. D. Brillouin spectroscopy of Nd-Ge co-doped silica fibers. J. Non-Cryst. Solids 355, 403–413 (2009).

    Article  CAS  Google Scholar 

  35. Park, Y.-S. & Wang, H. Resolved-sideband and cryogenic cooling of an optomechanical resonator. Nat. Phys. 5, 489–493 (2009).

    Article  CAS  Google Scholar 

  36. Bahl, G., Zehnpfennig, J., Tomes, M. & Carmon, T. Stimulated optomechanical excitation of surface acoustic waves in a microdevice. Nat. Commun. 2, 403 (2011).

    Article  Google Scholar 

  37. Bahl, G., Tomes, M., Marquardt, F. & Carmon, T. Observation of spontaneous Brillouin cooling. Nat. Phys. 8, 203–207 (2011).

    Article  Google Scholar 

  38. Anetsberger, G., Rivière, R., Sehliesser, A., Arcizet, O. & Kippenberg, T. J. Ultralow dissipation optomechanical resonators on a chip. Nat. Photon. 2, 627–633 (2009).

    Article  Google Scholar 

  39. Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband laser cooling of a micromechanical oscillator. Nat. Phys. 4, 415–419 (2008).

    Article  CAS  Google Scholar 

  40. Schliesser, A., Arcizet, O., Rivière, R., Anetsberger, G. & Kippenberg, T. J. Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nat. Phys. 5, 509–514 (2009).

    Article  CAS  Google Scholar 

  41. Rivière, R. et al. Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state. Phys. Rev. A 83, 063835 (2011).

    Article  Google Scholar 

  42. Okawachi, Y. et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005).

    Article  Google Scholar 

  43. Stokes, L. F., Chodorow, M. & Shaw, H. J. All-fiber stimulated Brillouin ring laser with submilliwatt pump threshold. Opt. Lett. 7, 509–511 (1982).

    Article  CAS  Google Scholar 

  44. Boyd, R. W. & Gauthier, D. J. Controlling the velocity of light pulses. Science 326, 1074–1077 (2009).

    Article  CAS  Google Scholar 

  45. Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Article  CAS  Google Scholar 

  46. Vahala, K. et al. A phonon laser. Nat. Phys. 5, 682–686 (2009).

    Article  CAS  Google Scholar 

  47. Mahboob, I., Nishiguchi, K., Fujiwara, A. & Yamaguchi, H. Phonon lasing in an electromechanical resonator. Phys. Rev. Lett. 110, 127202 (2013).

    Article  CAS  Google Scholar 

  48. Anderson, P. W., Halperin, B. I. & Varma, C. M. Anomalous low-temperature thermal properties of glasses and spin glasses. Philos. Mag. 25, 1–9 (1972).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Fleury, H. Shin, E. Kittlaus, N. Otterstrom and S. Gertler for a number of thoughtful criticisms and suggestions. Primary support for this work was provided by NSF MRSEC DMR-1119826. This work was supported in part by the Packard Fellowship for Science and Engineering as well as Yale University startup funding.

Author information

Authors and Affiliations

Authors

Contributions

R.O.B., P.K. and P.T.R. conceived, designed, and built the spectral hole burning experiments with the assistance of W.H.R. R.O.B. and P.K. performed the measurements and analysed the data with the assistance of W.H.R. and P.T.R. R.O.B. and P.T.R. developed the spectral hole burning theory with assistance from P.K. and W.H.R. All authors contributed to the writing of this paper.

Corresponding authors

Correspondence to R. O. Behunin or P. T. Rakich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2000 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behunin, R., Kharel, P., Renninger, W. et al. Engineering dissipation with phononic spectral hole burning. Nature Mater 16, 315–321 (2017). https://doi.org/10.1038/nmat4819

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing