Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution-based electrical doping of semiconducting polymer films over a limited depth

This article has been updated

Abstract

Solution-based electrical doping protocols may allow more versatility in the design of organic electronic devices; yet, controlling the diffusion of dopants in organic semiconductors and their stability has proven challenging. Here we present a solution-based approach for electrical p-doping of films of donor conjugated organic semiconductors and their blends with acceptors over a limited depth with a decay constant of 10–20 nm by post-process immersion into a polyoxometalate solution (phosphomolybdic acid, PMA) in nitromethane. PMA-doped films show increased electrical conductivity and work function, reduced solubility in the processing solvent, and improved photo-oxidative stability in air. This approach is applicable to a variety of organic semiconductors used in photovoltaics and field-effect transistors. PMA doping over a limited depth of bulk heterojunction polymeric films, in which amine-containing polymers were mixed in the solution used for film formation, enables single-layer organic photovoltaic devices, processed at room temperature, with power conversion efficiencies up to 5.9 ± 0.2% and stable performance on shelf-lifetime studies at 60 °C for at least 280 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical properties of P3HT films immersed in a solution of PMA.
Figure 2: Properties and interactions of doped P3HT films.
Figure 3: Photo-oxidation and electrical properties of doped P3HT films.
Figure 4: PMA-doped OPV devices.
Figure 5: Single-layer OPV devices.

Similar content being viewed by others

Change history

  • 10 January 2017

    In the original version published, the S(2s) peak in Fig. 2a was not clearly labelled. This has now been corrected.

References

  1. Maennig, B. et al. Organic p–i–n solar cells. Appl. Phys. A 79, 1–14 (2004).

    Article  CAS  Google Scholar 

  2. Liu, C., Xu, Y. & Noh, Y.-Y. Contact engineering in organic field-effect transistors. Mater. Today 18, 79–96 (March 2015).

    Article  CAS  Google Scholar 

  3. Lüssem, B., Riede, M. & Leo, K. Doping of organic semiconductors. Phys. Status Solidi A 210, 9–43 (2013).

    Article  Google Scholar 

  4. Heliatek sets new Organic Photovoltaic world record efficiency of 13.2% (8 February 2016); http://www.heliatek.com/en/press/press-releases/details/heliatek-sets-new-organic-photovoltaic-world-record-efficiency-of-13-2

  5. Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007).

    Article  CAS  Google Scholar 

  6. Meerheim, R., Furno, M., Hofmann, S., Lüssem, B. & Leo, K. Quantification of energy loss mechanisms in organic light-emitting diodes. Appl. Phys. Lett. 97, 253305 (2010).

    Article  Google Scholar 

  7. Salzmann, I., Heimel, G., Oehzelt, M., Winkler, S. & Koch, N. Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules. Acc. Chem. Res. 49, 370–378 (2016).

    Article  CAS  Google Scholar 

  8. Yoo, S.-J. & Kim, J.-J. Charge transport in electrically doped amorphous organic semiconductors. Macromol. Rapid Commun. 36, 984–1000 (2015).

    Article  CAS  Google Scholar 

  9. Espinosa, N., Hosel, M., Angmo, D. & Krebs, F. C. Solar cells with one-day energy payback for the factories of the future. Energy Environ. Sci. 5, 5117–5132 (2012).

    Article  CAS  Google Scholar 

  10. Loiudice, A., Rizzo, A., Biasiucci, M. & Gigli, G. Bulk heterojunction versus diffused bilayer: the role of device geometry in solution p-doped polymer-based solar cells. J. Phys. Chem. Lett. 3, 1908–1915 (2012).

    Article  CAS  Google Scholar 

  11. Mandoc, M. M., Kooistra, F. B., Hummelen, J. C., de Boer, B. & Blom, P. W. M. Effect of traps on the performance of bulk heterojunction organic solar cells. Appl. Phys. Lett. 91, 263505 (2007).

    Article  Google Scholar 

  12. Mi, B. X., Gao, Z. Q., Cheah, K. W. & Chen, C. H. Organic light-emitting diodes using 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane as p-type dopant. Appl. Phys. Lett. 94, 073507 (2009).

    Article  Google Scholar 

  13. Huang, J., Blochwitz-Nimoth, J., Pfeiffer, M. & Leo, K. Influence of the thickness and doping of the emission layer on the performance of organic light-emitting diodes with PiN structure. J. Appl. Phys. 93, 838–844 (2003).

    Article  CAS  Google Scholar 

  14. Mor, G. K. et al. Contact doping with sub-monolayers of strong polyelectrolytes for organic photovoltaics. Adv. Energy Mater. 4, 1–6 (2014).

    Article  Google Scholar 

  15. Li, J. et al. Measurement of small molecular dopant F4TCNQ and C60F36 diffusion in organic bilayer architectures. ACS Appl. Mater. Interfaces 7, 28420–28428 (2015).

    Article  CAS  Google Scholar 

  16. Dai, A. et al. Investigation of p-dopant diffusion in polymer films and bulk heterojunctions: stable spatially-confined doping for all-solution processed solar cells. Org. Electron. 23, 151–157 (2015).

    Article  CAS  Google Scholar 

  17. Dai, A. et al. Enhanced charge-carrier injection and collection via lamination of doped polymer layers p-doped with a solution-processible molybdenum complex. Adv. Funct. Mater. 24, 2197–2204 (2014).

    Article  CAS  Google Scholar 

  18. Aizawa, N. et al. Simultaneous cross-linking and p-doping of a polymeric semiconductor film by immersion into a phosphomolybdic acid solution for use in organic solar cells. Chem. Commun. 52, 3825–3827 (2016).

    Article  CAS  Google Scholar 

  19. Keggin, J. F. Structure of the crystals of 12-phosphotungstic acid. Nature 132, 351 (1933).

    Article  CAS  Google Scholar 

  20. Aizawa, N. et al. Instant low-temperature cross-linking of poly(N-vinylcarbazole) for solution-processed multilayer blue phosphorescent organic light-emitting devices. Adv. Mater. 26, 7543–7546 (2014).

    Article  CAS  Google Scholar 

  21. Zhu, Y. W. et al. A cost-effective commercial soluble oxide cluster for highly efficient and stable organic solar cells. J. Mater. Chem. A 2, 1436–1442 (2014).

    Article  CAS  Google Scholar 

  22. Jia, X. et al. Highly efficient low-bandgap polymer solar cells with solution-processed and annealing-free phosphomolybdic acid as hole-transport layers. ACS Appl. Mater. Interfaces 7, 5367–5372 (2015).

    Article  CAS  Google Scholar 

  23. Alaaeddine, M. et al. Enhancement of photovoltaic efficiency by insertion of a polyoxometalate layer at the anode of an organic solar cell. Inorg. Chem. Front. 1, 682–688 (2014).

    Article  CAS  Google Scholar 

  24. Vasilopoulou, M. et al. Annealing-free highly crystalline solution-processed molecular metal oxides for efficient single-junction and tandem polymer solar cells. Energy Environ. Sci. 8, 2448–2463 (2015).

    Article  CAS  Google Scholar 

  25. Chen, H.-Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat. Photon. 3, 649–653 (2009).

    Article  CAS  Google Scholar 

  26. Liang, Y. Y. et al. For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135–E138 (2010).

    Article  CAS  Google Scholar 

  27. Wang, M. et al. High open circuit voltage in regioregular narrow band gap polymer solar cells. J. Am. Chem. Soc. 136, 12576–12579 (2014).

    Article  CAS  Google Scholar 

  28. Ma, W. et al. Influence of processing parameters and molecular weight on the morphology and properties of high-performance PffBT4T-2OD:PC71BM organic solar cells. Adv. Energy Mater. 5, 1501400 (2015).

    Article  Google Scholar 

  29. Sirringhaus, H. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014).

    Article  CAS  Google Scholar 

  30. Deckman, I., Moshonov, M., Obuchovsky, S., Brener, R. & Frey, G. L. Spontaneous interlayer formation in OPVs by additive migration due to additive-metal interactions. J. Mater. Chem. A 2, 16746–16754 (2014).

    Article  CAS  Google Scholar 

  31. Shamieh, B., Obuchovsky, S. & Frey, G. L. Spontaneous generation of interlayers in OPVs with silver cathodes: enhancing Voc and lifetime. J. Mater. Chem. C 4, 1821–1828 (2016).

    Article  CAS  Google Scholar 

  32. Kang, H. et al. Simplified tandem polymer solar cells with an ideal self-organized recombination layer. Adv. Mater. 27, 1408–1413 (2015).

    Article  CAS  Google Scholar 

  33. Ma, D. et al. Self-organization of amine-based cathode interfacial materials in inverted polymer solar cells. ACS Nano 8, 1601–1608 (2014).

    Article  CAS  Google Scholar 

  34. Brown, P. J. et al. Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 67, 064203 (2003).

    Article  Google Scholar 

  35. Brown, P. J., Sirringhaus, H., Harrison, M., Shkunov, M. & Friend, R. H. Optical spectroscopy of field-induced charge in self-organized high mobility poly(3-hexylthiophene). Phys. Rev. B 63, 125204 (2001).

    Article  Google Scholar 

  36. Burgot, J.-L. Ionic Equilibria in Analytical Chemistry Vol. 772 (Springer, 2012).

    Book  Google Scholar 

  37. Mendez, H. et al. Charge-transfer crystallites as molecular electrical dopants. Nat. Commun. 6, 8560 (2015).

    Article  CAS  Google Scholar 

  38. Pingel, P. & Neher, D. Comprehensive picture of p-type doping of P3HT with the molecular acceptor F4TCNQ. Phys. Rev. B 87, 115209 (2013).

    Article  Google Scholar 

  39. Shallcross, R. C. et al. Quantifying the extent of contact doping at the interface between high work function electrical contacts and poly(3-hexylthiophene) (P3HT). J. Phys. Chem. Lett. 6, 1303–1309 (2015).

    Article  CAS  Google Scholar 

  40. Kyaw, A. K. K. et al. An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl. Phys. Lett. 93, 221107 (2008).

    Article  Google Scholar 

  41. Tan, Z. A. et al. Efficient and stable polymer solar cells with solution-processed molybdenum oxide interfacial layer. J. Mater. Chem. A 1, 657–664 (2013).

    Article  CAS  Google Scholar 

  42. Girotto, C., Voroshazi, E., Cheyns, D., Heremans, P. & Rand, B. P. Solution-processed MoO3 thin films as a hole-injection layer for organic solar cells. ACS Appl. Mater. Interfaces 3, 3244–3247 (2011).

    Article  CAS  Google Scholar 

  43. Murase, S. & Yang, Y. Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method. Adv. Mater. 24, 2459–2462 (2012).

    Article  CAS  Google Scholar 

  44. Wang, G. et al. In situ growth of columnar MoO3 buffer layer for organic photovoltaic applications. Org. Electron. 15, 29–34 (2014).

    Article  CAS  Google Scholar 

  45. Meyer, J. et al. Transition metal oxides for organic electronics: energetics, device physics and applications. Adv. Mater. 24, 5408–5427 (2012).

    Article  CAS  Google Scholar 

  46. Lide, D. R. CRC Handbook of Chemistry and Physics (CRC Press, 2015).

    Google Scholar 

  47. Dweydari, A. W. & Mee, C. H. B. Work function measurements on (100) and (110) surfaces of silver. Phys. Status Solidi A 27, 223–230 (1975).

    Article  CAS  Google Scholar 

  48. Ran, N. A. et al. Harvesting the full potential of photons with organic solar cells. Adv. Mater. 28, 1482–1488 (2016).

    Article  CAS  Google Scholar 

  49. Zhou, Y. H. et al. A universal method to produce low-work function electrodes for organic electronics. Science 336, 327–332 (2012).

    Article  CAS  Google Scholar 

  50. Takahashi, T., Tokailin, H. & Sagawa, T. Angle-resolved ultraviolet photoelectron-spectroscopy of the unoccupied band-structure of graphite. Phys. Rev. B 32, 8317–8324 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the Department of the Navy, Office of Naval Research Award No. N00014-14-1-0580 and N00014-16-1-2520, through the MURI Center CAOP, Office of Naval Research Award N00014-04-1-0313 and by the Department of Energy through the Bay Area Photovoltaic Consortium under Award Number DE-EE0004946. The authors would also like to thank J. Anthony and S. Barlow for helpful discussions. B.K. acknowledges a Visiting Professorship from the University of Cologne, Germany.

Author information

Authors and Affiliations

Authors

Contributions

V.A.K., C.F.-H., N.A., S.R.M., W.-F.C., F.A.L. and B.K. conceived and developed the ideas. V.A.K. and F.A.L. designed the experiments and performed device fabrication, electrical characterization. A.P., C.F.-H. and S.G. performed shelf lifetime and thermal stress experiments. C.F.-H. and W.-F.C. performed photo-oxidation and spectroscopic ellipsometry experiments. C.F.-H. modelled spectroscopic ellipsometry data. S.C. and W.-F.C. performed XPS measurements. M.W., G.C.B. and T.-Q.N. synthesized the donor polymer PIPCP used in this study. C.F.-H., S.R.M. and B.K. coordinated and directed the study. All authors contributed to the manuscript preparation.

Corresponding author

Correspondence to Bernard Kippelen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4433 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesov, V., Fuentes-Hernandez, C., Chou, WF. et al. Solution-based electrical doping of semiconducting polymer films over a limited depth. Nature Mater 16, 474–480 (2017). https://doi.org/10.1038/nmat4818

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4818

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing