Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x

Subjects

Abstract

The short charging times and high power capabilities associated with capacitive energy storage make this approach an attractive alternative to batteries. One limitation of electrochemical capacitors is their low energy density and for this reason, there is widespread interest in pseudocapacitive materials that use Faradaic reactions to store charge. One candidate pseudocapacitive material is orthorhombic MoO3 (α-MoO3), a layered compound with a high theoretical capacity for lithium (279 mA h g−1 or 1,005 C g−1). Here, we report on the properties of reduced α-MoO3−x(R-MoO3−x) and compare it with fully oxidized α-MoO3 (F-MoO3). The introduction of oxygen vacancies leads to a larger interlayer spacing that promotes faster charge storage kinetics and enables the α-MoO3 structure to be retained during the insertion and removal of Li ions. The higher specific capacity of the R-MoO3−x is attributed to the reversible formation of a significant amount of Mo4+ following lithiation. This study underscores the potential importance of incorporating oxygen vacancies into transition metal oxides as a strategy for increasing the charge storage kinetics of redox-active materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural analysis of as-prepared α-MoO3.
Figure 2: Characterization of oxygen vacancies in α-MoO3.
Figure 3: Electrochemical analysis of thin-film MoO3 electrodes.
Figure 4: Structural characterization of F-MoO3 and R-MoO3−x associated with electrochemical cycling.
Figure 5: Effect of oxygen vacancies on the presence of Mo4+ and Mo5+ oxidation states during electrochemical cycling.

Similar content being viewed by others

References

  1. Stevenson, K. J., Ozolins, V. & Dunn, B. Electrochemical energy storage. Acc. Chem. Res. 46, 1051–1052 (2013).

    CAS  Google Scholar 

  2. Miller, J. R. & Simon, P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008).

    Article  CAS  Google Scholar 

  3. Simon, P., Gogotsi, Y. & Dunn, B. Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014).

    CAS  Google Scholar 

  4. Lee, H. Y. & Goodenough, J. B. Ideal supercapacitor behavior of amorphous V2O5nH2O in potassium chloride (KCl) aqueous solution. J. Solid State Chem. 148, 81–84 (1999).

    CAS  Google Scholar 

  5. Toupin, M., Brousse, T. & Bélanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004).

    CAS  Google Scholar 

  6. Zheng, J. P., Cygan, P. J. & Jow, T. R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J. Electrochem. Soc. 142, 2699–2703 (1995).

    CAS  Google Scholar 

  7. Brousse, T. et al. Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor. J. Power Sources 173, 633–641 (2007).

    CAS  Google Scholar 

  8. Brezesinski, K. et al. Pseudocapacitive contributions to charge storage in highly ordered mesoporous group V transition metal oxides with iso-oriented layered nanocrystalline domains. J. Am. Chem. Soc. 132, 6982–6990 (2010).

    CAS  Google Scholar 

  9. Li, W., Cheng, F., Tao, Z. & Chen, J. Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α-MoO3 microrods. J. Phys. Chem. B 110, 119–124 (2006).

    CAS  Google Scholar 

  10. Tsumura, T. & Inagaki, M. Lithium insertion/extraction reaction on crystalline MoO3 . Solid State Ion. 104, 183–189 (1997).

    CAS  Google Scholar 

  11. Zhou, L. et al. α-MoO3 nanobelts: a high performance cathode material for lithium ion batteries. J. Phys. Chem. C 114, 21868–21872 (2010).

    CAS  Google Scholar 

  12. Lee, S. H. et al. Reversible lithium-ion insertion in molybdenum oxide nanoparticles. Adv. Mater. 20, 3627–3632 (2008).

    CAS  Google Scholar 

  13. Chernova, N. A., Roppolo, M., Dillon, A. C. & Whittingham, M. S. Layered vanadium and molybdenum oxides: batteries and electrochromics. J. Mater. Chem. 19, 2526–2552 (2009).

    CAS  Google Scholar 

  14. Mendoza-Sánchez, B. & Grant, P. S. Charge storage properties of a α-MoO3/carboxyl-functionalized single-walled carbon nanotube composite electrode in a Li ion electrolyte. Electrochim. Acta 98, 294–302 (2013).

    Google Scholar 

  15. Iriyama, Y., Abe, T., Inaba, M. & Ogumi, Z. Transmission electron microscopy (TEM) analysis of two-phase reaction in electrochemical lithium insertion within α-MoO3 . Solid State Ion. 135, 95–100 (2000).

    CAS  Google Scholar 

  16. Chen, J. S., Cheah, Y. L., Madhavi, S. & Lou, X. W. Fast synthesis of α-MoO3 nanorods with controlled aspect ratios and their enhanced lithium storage capabilities. J. Phys. Chem. C 114, 8675–8678 (2010).

    CAS  Google Scholar 

  17. Reddy, C. V. S., Walker, E. H., Wen, C. & Mho, S. I. Hydrothermal synthesis of MoO3 nanobelts utilizing poly(ethylene glycol). J. Power Sources 183, 330–333 (2008).

    Google Scholar 

  18. Hassan, M. F., Guo, Z. P., Chen, Z. & Liu, H. K. Carbon-coated MoO3 nanobelts as anode materials for lithium-ion batteries. J. Power Sources 195, 2372–2376 (2010).

    CAS  Google Scholar 

  19. Riley, L. A., Lee, S. H., Gedvilias, L. & Dillon, A. C. Optimization of MoO3 nanoparticles as negative-electrode material in high-energy lithium ion batteries. J. Power Sources 195, 588–592 (2010).

    CAS  Google Scholar 

  20. Kang, J. H., Paek, S. M. & Choy, J. H. In situ X-ray absorption spectroscopic study for α-MoO3 electrode upon discharge/charge reaction in lithium secondary batteries. Bull. Korean Chem. Soc. 31, 3675–3678 (2010).

    CAS  Google Scholar 

  21. Mai, L. et al. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Adv. Mater. 19, 3712–3716 (2007).

    CAS  Google Scholar 

  22. Wang, X.-J., Nesper, R., Villevieille, C. & Novák, P. Ammonolyzed MoO3 nanobelts as novel cathode material of rechargeable Li-ion batteries. Adv. Energy Mater. 3, 606–614 (2013).

    CAS  Google Scholar 

  23. Mendoza-Sánchez, B. et al. An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte. Electrochim. Acta 91, 253–260 (2013).

    Google Scholar 

  24. Brezesinski, T., Wang, J., Tolbert, S. H. & Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 9, 146–151 (2010).

    CAS  Google Scholar 

  25. Balendhran, S. et al. Enhanced charge carrier mobility in two-dimensional high dielectric molybdenum oxide. Adv. Mater. 25, 109–114 (2013).

    CAS  Google Scholar 

  26. Hu, X. K. et al. Comparative study on MoO3 and HxMoO3 nanobelts: structure and electric transport. Chem. Mater. 20, 1527–1533 (2008).

    CAS  Google Scholar 

  27. Dieterle, M., Weinberg, G. & Mestl, G. Raman spectroscopy of molybdenum oxides: part I. Structural characterization of oxygen defects in MoO3–x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 4, 812–821 (2002).

    CAS  Google Scholar 

  28. Wang, G., Ling, Y. & Li, Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4, 6682–6691 (2012).

    CAS  Google Scholar 

  29. Lu, X. et al. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690–1696 (2012).

    CAS  Google Scholar 

  30. Shin, J.-Y., Joo, J. H., Samuelis, D. & Maier, J. Oxygen-deficient TiO2−δ nanoparticles via hydrogen reduction for high rate capability lithium batteries. Chem. Mater. 24, 543–551 (2012).

    CAS  Google Scholar 

  31. Xu, L. et al. 3D flowerlike α-nickel hydroxide with enhanced electrochemical activity synthesized by microwave-assisted hydrothermal method. Chem. Mater. 20, 308–316 (2008).

    CAS  Google Scholar 

  32. Murugan, A. V., Muraliganth, T. & Manthiram, A. Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries. J. Phys. Chem. C 112, 14665–14671 (2008).

    CAS  Google Scholar 

  33. Cook, J. B., Kim, C., Xu, L. & Cabana, J. The effect of Al substitution on the chemical and electrochemical phase stability of orthorhombic LiMnO2 . J. Electrochem. Soc. 160, A46–A52 (2013).

    CAS  Google Scholar 

  34. Lindström, H. et al. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 101, 7717–7722 (1997).

    Google Scholar 

  35. Wang, J., Polleux, J., Lim, J. & Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 111, 14925–14931 (2007).

    CAS  Google Scholar 

  36. Augustyn, V., Simon, P. & Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014).

    CAS  Google Scholar 

  37. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 2nd edn (Wiley, 2001).

    Google Scholar 

  38. Hashem, A. M. et al. Two-phase reaction mechanism during chemical lithium insertion into α-MoO3 . Ionics 13, 3–8 (2007).

    CAS  Google Scholar 

  39. Kim, H.-S., Cook, J. B., Tolbert, S. H. & Dunn, B. The development of pseudocapacitive properties in nanosized-MoO2 . J. Electrochem. Soc. 162, A5083–A5090 (2015).

    CAS  Google Scholar 

  40. Augustyn, V. et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 12, 518–522 (2013).

    CAS  Google Scholar 

  41. Muller, G. A. et al. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 15, 1911–1917 (2015).

    CAS  Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  43. Dal Corso, A. Projector augmented wave method with spin–orbit coupling: applications to simple solids and zincblende-type semiconductors. Phys. Rev. B 86, 08135 (2012).

    Google Scholar 

  44. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  45. Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Google Scholar 

  46. Klimes, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Google Scholar 

  47. Ding, H. et al. Computational investigation of electron small polarons in α-MoO3 . J. Phys. Chem. C 118, 15565–15572 (2014).

    CAS  Google Scholar 

  48. Ong, S. P., Chevrier, V. L. & Ceder, G. Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys. Rev. B 83, 075112 (2011).

    Google Scholar 

  49. Cheng, J., Sulpizi, M., VandeVondele, J. & Sprik, M. Hole localization and thermochemistry of oxidative dehydrogenation of aqueous rutile TiO2(110). ChemCatChem 4, 636–640 (2012).

    CAS  Google Scholar 

  50. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  51. Ding, H., Ray, K. G., Ozolins, V. & Asta, M. Structural and vibrational properties of α-MoO3 from van der Waals corrected density functional theory calculations. Phys. Rev. B 85, 012104 (2012).

    Google Scholar 

  52. Staskiewicz, B. A., Tucker, J. R. & Snyder, P. E. The heat of formation of molybdenum dioxide and molybdenum trioxide. J. Am. Chem. Soc. 77, 2987–2989 (1955).

    CAS  Google Scholar 

  53. Aydinol, M. K., Kohan, A. F. & Ceder, G. Ab initio calculation of the intercalation voltage of lithium transition metal oxide electrodes for rechargeable batteries. J. Power Sources 68, 664–668 (1997).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Center for Molecularly Engineered Energy Materials, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under award DE-SC001342 and through individual DOE grant DE-SC0014213 (S.H.T.). The XPS instrument used in this work was obtained with support from the NSF, award number 0840531. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231. H.L. and V.O. acknowledge financial support from the U.S. DOE under grant DE-FG02-07ER46433. Additional support was provided by the Office of Naval Research. We thank E. D. Gaspera for his experimental insights.

Author information

Authors and Affiliations

Authors

Contributions

H.-S.K., J.S.K. and J.B.C.: experimental work and data analysis. H.L.: computational study. S.H.T., V.O. and B.D.: project planning and data analysis.

Corresponding authors

Correspondence to Sarah H. Tolbert, Vidvuds Ozolins or Bruce Dunn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HS., Cook, J., Lin, H. et al. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nature Mater 16, 454–460 (2017). https://doi.org/10.1038/nmat4810

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4810

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing