Abstract
Materials research is key to enable synthetic membranes for large-scale, energy-efficient molecular separations. Materials with rigid, engineered pore structures add an additional degree of freedom to create advanced membranes by providing entropically moderated selectivities. Scalability — the capability to efficiently and economically pack membranes into practical modules — is a critical yet often neglected factor to take into account for membrane materials screening. In this Progress Article, we highlight continuing developments and identify future opportunities in scalable membrane materials based on these rigid features, for both gas and liquid phase applications. These advanced materials open the door to a new generation of membrane processes beyond existing materials and approaches.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Conductive and stable polyphenylene/CNT composite membrane for electrically enhanced membrane fouling mitigation
Frontiers of Environmental Science & Engineering Open Access 15 August 2023
-
Boosting membrane carbon capture via multifaceted polyphenol-mediated soldering
Nature Communications Open Access 27 March 2023
-
Towards the realisation of high permi-selective MoS2 membrane for water desalination
npj Clean Water Open Access 22 February 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Baker, R. W. Membrane Technology and Applications 2nd edn (Wiley, 2004).
Koros, W. J. & Lively, R. P. Water and beyond: expanding the spectrum of large-scale energy efficient separation processes. AIChE J. 58, 2624–2633 (2012).
Baker, R. W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002).
Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).
Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).
Koros, W. J. & Fleming, G. K. Membrane-based gas separation. J. Membr. Sci. 83, 1–80 (1993).
Koros, W. J., Fleming, G. K., Jordan, S. M., Kim, T. H. & Hoehn, H. H. Polymeric membrane materials for solution-diffusion based permeation separations. Prog. Polym. Sci. 13, 339–401 (1988).
Robeson, L. M., Smith, Z. P., Freeman, B. D. & Paul, D. R. Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes. J. Membr. Sci. 453, 71–83 (2014).
Geise, G. M., Paul, D. R. & Freeman, B. D. Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 39, 1–42 (2014).
Petropoulos, J. H. in Polymeric Gas Separation Membranes (eds Paul, D. R. & Yampolskii, Y. P.) 17–82 (CRC, 1993).
Karger, J. & Ruthven, D. M. Diffusion in Zeolites and Other Microporous Solids (Wiley, 1992).
Singh, A. & Koros, W. J. Significance of entropic selectivity for advanced gas separation membranes. Ind. Eng. Chem. Res. 35, 1231–1234 (1996).
Ning, X. & Koros, W. J. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation. Carbon 66, 511–522 (2014).
Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).
Omole, I. C., Adams, R. T., Miller, S. J. & Koros, W. J. Effects of CO2 on a high performance hollow-fiber membrane for natural gas purification. Ind. Eng. Chem. Res. 49, 4887–4896 (2010).
O'Keeffe, M. & Yaghi, O. M. Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012).
Deng, H. X. et al. Large-pore apertures in a series of metal–organic frameworks. Science 336, 1018–1023 (2012).
Bae, Y.S. & Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. 50, 11586–11596 (2011).
Bae, Y. S., Farha, O. K., Hupp, J. T. & Snurr, R. Q. Enhancement of CO2/N2 selectivity in a metal–organic framework by cavity modification. J. Mater. Chem. 19, 2131–2134 (2009).
Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal–organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016).
Zhang, C. & Koros, W. J. Tailoring the transport properties of zeolitic imidazolate frameworks by post-synthetic thermal modification. ACS Appl. Mater. Interfaces 7, 23407–23411 (2015).
Eum, K. et al. Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks. J. Am. Chem. Soc. 137, 4191–4197 (2015).
Perez, E. V., Balkus, K. J., Ferraris, J. P. & Musselman, I. H. Mixed-matrix membranes containing MOF-5 for gas separations. J. Membr. Sci. 328, 165–173 (2009).
Duan, C., Jie, X., Liu, D., Cao, Y. & Yuan, Q. Post-treatment effect on gas separation property of mixed matrix membranes containing metal organic frameworks. J. Membr. Sci. 466, 92–102 (2014).
Zhang, C. & Koros, W. J. Zeolitic imidazolate framework-enabled membranes: challenges and opportunities. J. Phys. Chem. Lett. 6, 3841–3849 (2015).
Kwon, H. T. & Jeong, H.K. In situ synthesis of thin zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 135, 10763–10768 (2013).
Liu, D. F., Ma, X. L., Xi, H. X. & Lin, Y. S. Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. J. Membr. Sci. 451, 85–93 (2014).
Pan, Y. C., Liu, W., Zhao, Y. J., Wang, C. Q. & Lai, Z. P. Improved ZIF-8 membrane: effect of activation procedure and determination of diffusivities of light hydrocarbons. J. Membr. Sci. 493, 88–96 (2015).
Brown, A. J. et al. Interfacial microfluidic processing of metal–organic framework hollow fiber membranes. Science 345, 72–75 (2014).
Liu, Q., Wang, N., Caro, J. & Huang, A. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. J. Am. Chem. Soc. 135, 17679–17682 (2013).
Rao, M. B. & Sircar, S. Nanoporous carbon membranes for separation of gas-mixtures by selective surface flow. J. Membr. Sci. 85, 253–264 (1993).
Pinnau, I., Casillas, C. G., Morisato, A. & Freeman, B. D. Hydrocarbon/hydrogen mixed gas permeation in poly(1trimethylsilyl1-propyne) (PTMSP), poly(1phenyl1-propyne) (PPP), and PTMSP/PPP blends. J. Polym. Sci. Pol. Phys. 34, 2613–2621 (1996).
Thomas, S., Pinnau, I., Du, N. & Guiver, M. D. Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer. J. Membr. Sci. 338, 1–4 (2009).
Rui, Z., James, J. B., Kasik, A. & Lin, Y. S. Metal–organic framework membrane process for high purity CO2 production. AIChE J. 62, 3836–3841 (2016).
Park, H. B. et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318, 254–258 (2007).
McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).
Sanders, D. E. et al. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54, 4729–4761 (2013).
Swaidan, R., Ghanem, B. & Pinnau, I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett. 4, 947–951 (2015).
Jung, C. H., Lee, J. E., Han, S. H., Park, H. B. & Lee, Y. M. Highly permeable and selective poly(benzoxazolecoimide) membranes for gas separation. J. Membr. Sci. 350, 301–309 (2010).
Carta, M. et al. Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers. Adv. Mater. 26, 3526–3531 (2014).
Ghanem, B. S., Swaidan, R., Ma, X., Litwiller, E. & Pinnau, I. Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves. Adv. Mater. 26, 6696–6700 (2014).
Petropoulos, J. H., Papadokostaki, K. G., Minelli, M. & Doghieri, F. On the role of diffusivity ratio and partition coefficient in diffusional molecular transport in binary composite materials, with special reference to the Maxwell equation. J. Membr. Sci. 456, 162–166 (2014).
Zhang, C., Dai, Y., Johnson, J. R., Karvan, O. & Koros, W. J. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci. 389, 34–42 (2012).
Swaidan, R. J., Ma, X. H. & Pinnau, I. Tuning PIM-PI-OH/Z-MOF-Based Mixed-Matrix Membranes for Highly Efficient Propylene/Propane Separation. In NAMS 2016 (2016).
Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).
Geier, S. J. et al. Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Sci. 4, 2054–2061 (2013).
Lin, R. et al. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance. ACS Appl. Mater. Interfaces 6, 5609–5618 (2014).
Seoane, B. et al. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454 (2015).
Steel, K. M. & Koros, W. J. An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials. Carbon 43, 1843–1856 (2005).
Salinas, O., Ma, X. H., Litwiller, E. & Pinnau, I. Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1). J. Membr. Sci. 504, 133–140 (2016).
Ma, X. L., Lin, Y. S., Wei, X. T. & Kniep, J. Ultrathin carbon molecular sieve membrane for propylene/propane separation. AIChE J. 62, 491–499 (2016).
Bhuwania, N. et al. Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon 76, 417–434 (2014).
Xu, L., Rungta, M. & Koros, W. J. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. J. Membr. Sci. 380, 138–147 (2011).
Louie, J. S., Pinnau, I. & Reinhard, M. Gas and liquid permeation properties of modified interfacial composite reverse osmosis membranes. J. Membr. Sci. 325, 793–800 (2008).
Ma, C. H. & Koros, W. J. Estercrosslinkable composite hollow fiber membranes for CO2 removal from natural gas. Ind. Eng. Chem. Res. 52, 10495–10505 (2013).
Vrijenhoek, E. M., Hong, S. & Elimelech, M. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci. 188, 115–128 (2001).
Lisitsin, D., Hasson, D. & Semiat, R. Critical flux detection in a silica scaling RO system. Desalination 186, 311–318 (2005).
Bacchin, P., Aimar, P. & Field, R. W. Critical and sustainable fluxes: theory, experiments and applications. J. Membr. Sci. 281, 42–69 (2006).
Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 43, 2317–2348 (2009).
Everett, D. H. Thermodynamics of interfaces: an appreciation of the work of Géza Schay. Colloids Surf. A 71, 205–217 (1993).
Elimelech, M., Zhu, X. H., Childress, A. E. & Hong, S. K. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci. 127, 101–109 (1997).
Schwinge, J., Neal, P. R., Wiley, D. E., Fletcher, D. F. & Fane, A. G. Spiral wound modules and spacers: review and analysis. J. Membr. Sci. 242, 129–153 (2004).
Ning, R. Y., Troyer, T. L. & Tominello, R. S. Chemical control of colloidal fouling of reverse osmosis systems. Desalination 172, 1–6 (2005).
Herzberg, M. & Elimelech, M. Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure. J. Membr. Sci. 295, 11–20 (2007).
Bowen, T. C., Noble, R. D. & Falconer, J. L. Fundamentals and applications of pervaporation through zeolite membranes. J. Membr. Sci. 245, 1–33 (2004).
Liu, R., Qiao, X. & Chung, T.S. The development of high performance P84 co-polyimide hollow fibers for pervaporation dehydration of isopropanol. Chem. Eng. Sci. 60, 6674–6686 (2005).
Okamoto, K.-i., Kita, H. & Horii, K. Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures. Ind. Eng. Chem. Res. 40, 163–175 (2001).
Morigami, Y., Kondo, M., Abe, J., Kita, H. & Okamoto, K. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep. Purif. Technol. 25, 251–260 (2001).
Gallego-Lizon, T., Edwards, E., Lobiundo, G. & Freitas dos Santos, L. Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes. J. Membr. Sci. 197, 309–319 (2002).
Chaudry, M. A. Water and ions transport mechanism in hyperfiltration with symmetric cellulose acetate membranes. J. Membr. Sci. 206, 319–332 (2002).
Marchetti, P., Jimenez Solomon, M. F., Szekely, G. & Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114, 10735–10806 (2014).
Cath, T. Y., Childress, A. E. & Elimelech, M. Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 281, 70–87 (2006).
Bui, N. N., Lind, M. L., Hoek, E. M. V. & McCutcheon, J. R. Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J. Membr. Sci. 385, 10–19 (2011).
Shaffer, D. L., Werber, J. R., Jaramillo, H., Lin, S. H. & Elimelech, M. Forward osmosis: where are we now? Desalination 356, 271–284 (2015).
Jin, Y. & Su, Z. H. Effects of polymerization conditions on hydrophilic groups in aromatic polyamide thin films. J. Membr. Sci. 330, 175–179 (2009).
Zhao, L. & Ho, W. S. W. Novel reverse osmosis membranes incorporated with a hydrophilic additive for seawater desalination. J. Membr. Sci. 455, 44–54 (2014).
Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).
Cadotte, J. E. Reverse osmosis membrane. US patent 4,259,183 (1981).
Geise, G. M. et al. Water purification by membranes: the role of polymer science. J. Polym. Sci. B 48, 1685–1718 (2010).
Jeong, B.H. et al. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Membr. Sci. 294, 1–7 (2007).
Lind, M. L., Eumine Suk, D., Nguyen, T.V. & Hoek, E. M. V. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environ. Sci. Technol. 44, 8230–8235 (2010).
Wang, J. W. et al. A critical review of transport through osmotic membranes. J. Membr. Sci. 454, 516–537 (2014).
Rana, D. & Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 110, 2448–2471 (2010).
Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).
Shrivastava, A., Rosenberg, S. & Peery, M. Energy efficiency breakdown of reverse osmosis and its implications on future innovation roadmap for desalination. Desalination 368, 181–192 (2015).
Gregory, K. B., Vidic, R. D. & Dzombak, D. A. Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements 7, 181–186 (2011).
Kim, I.C. & Lee, K.H. Preparation of interfacially synthesized and silicone-coated composite polyamide nanofiltration membranes with high performance. Ind. Eng. Chem. Res. 41, 5523–5528 (2002).
Jimenez Solomon, M. F., Bhole, Y. & Livingston, A. G. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)—interfacial polymerization, surface modification and solvent activation. J. Membr. Sci. 434, 193–203 (2013).
Jimenez-Solomon, M. F., Song, Q., Jelfs, K. E., Munoz-Ibanez, M. & Livingston, A. G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 15, 760–767 (2016).
Koh, D.Y., McCool, B. A., Deckman, H. W. & Lively, R. P. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science 353, 804–807 (2016).
Jenkins, G. M. & Kawamura, K. Polymeric Carbons: Carbon Fibre, Glass and Char (Cambridge Univ. Press, 1976).
Qiu, W., Zhang, K., Li, F. S., Zhang, K. & Koros, W. J. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide. ChemSusChem 7, 1186–1194 (2014).
Carruthers, S. B., Ramos, G. L. & Koros, W. J. Morphology of integral-skin layers in hollow-fiber gas-separation membranes. J. Appl. Polym. Sci. 90, 399–411 (2003).
Xie, W. et al. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. J. Membr. Sci. 403, 152–161 (2012).
Acknowledgements
W.J.K. acknowledges financial support from the Office of Basic Energy Science of the US Department of Energy (grant DE-FG02-04ER15510). Valuable inputs on the manuscript by G. B. Wenz are highly appreciated.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Koros, W., Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nature Mater 16, 289–297 (2017). https://doi.org/10.1038/nmat4805
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4805
This article is cited by
-
Conductive and stable polyphenylene/CNT composite membrane for electrically enhanced membrane fouling mitigation
Frontiers of Environmental Science & Engineering (2024)
-
Unlocked sieving potential
Nature Materials (2023)
-
Towards the realisation of high permi-selective MoS2 membrane for water desalination
npj Clean Water (2023)
-
Advanced carbon molecular sieve membranes derived from molecularly engineered cross-linkable copolyimide for gas separations
Nature Materials (2023)
-
Eliminating lattice defects in metal–organic framework molecular-sieving membranes
Nature Materials (2023)