Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Entropic contributions enhance polarity compensation for CeO2(100) surfaces

Abstract

Surface structure controls the physical and chemical response of materials. Surface polar terminations are appealing because of their unusual properties but they are intrinsically unstable. Several mechanisms, namely metallization, adsorption, and ordered reconstructions, can remove thermodynamic penalties rendering polar surfaces partially stable. Here, for CeO2(100), we report a complementary stabilization mechanism based on surface disorder that has been unravelled through theoretical simulations that: account for surface energies and configurational entropies; show the importance of the ion distribution degeneracy; and identify low diffusion barriers between conformations that ensure equilibration. Disordered configurations in oxides might also be further stabilized by preferential adsorption of water. The entropic stabilization term will appear for surfaces with a high number of empty sites, typically achieved when removing part of the ions in a polar termination to make the layer charge zero. Assessing the impact of surface disorder when establishing new structure–activity relationships remains a challenge.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The different reconstructions of CeO2(100).
Figure 2: Surface dynamics of the O-t and CeO4-t reconstructions.
Figure 3: Surface energy and probability of all O-t (3 × 3) oxygen distributions.
Figure 4: Surface energy including entropy contributions and water adsorption.
Figure 5: Surface characterization of the most stable O-t distributions.

Similar content being viewed by others

References

  1. Wu, Z. & Overbury, S. H. Catalysis by Materials with Well-Defined Structures (Elsevier, 2015).

    Google Scholar 

  2. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Google Scholar 

  3. Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    CAS  Google Scholar 

  4. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    CAS  Google Scholar 

  5. Xia, X. et al. On the role of surface diffusion in determining the shape or morphology of noble-metal nanocrystals. Proc. Natl Acad. Sci. USA 110, 6669–6673 (2013).

    CAS  Google Scholar 

  6. Lu, M. et al. Shape-controlled synthesis of hybrid nanomaterials via three-dimensional hydrodynamic focusing. ACS Nano 8, 10026–10034 (2014).

    CAS  Google Scholar 

  7. Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    CAS  Google Scholar 

  8. Wei, Z. & Matsui, H. Rational strategy for shaped nanomaterial synthesis in reverse micelle reactors. Nat. Commun. 5, 3870 (2014).

    CAS  Google Scholar 

  9. Helmi, S., Ziegler, C., Kauert, D. J. & Seidel, R. Shape-controlled synthesis of gold nanostructures using DNA origami molds. Nano Lett. 14, 6693–6698 (2014).

    CAS  Google Scholar 

  10. Tasker, P. W. The stability of ionic crystal surfaces. J. Phys. C Solid State Phys. 12, 4977–4984 (1979).

    CAS  Google Scholar 

  11. Noguera, C. & Goniakowski, J. Polarity in oxide nano-objects. Chem. Rev. 113, 4073–4105 (2013).

    CAS  Google Scholar 

  12. Łodziana, Z., Topsøe, N.-Y. & Nørskov, J. K. A negative surface energy for alumina. Nat. Mater. 3, 289–293 (2004).

    Google Scholar 

  13. Lauritsen, J. V. et al. Stabilization principles for polar surfaces of ZnO. ACS Nano 5, 5987–5994 (2011).

    CAS  Google Scholar 

  14. Goniakowski, J. & Noguera, C. Characteristics of Pd deposition on the MgO(111) surface. Phys. Rev. B 60, 16120–16128 (1999).

    CAS  Google Scholar 

  15. Fonin, M. et al. Surface electronic structure of the Fe3O4 (100): evidence of a half-metal to metal transition. Phys. Rev. B 72, 104436 (2005).

    Google Scholar 

  16. Bliem, R. et al. Subsurface cation vacancy stabilization of the magnetite (001) surface. Science 346, 1215–1218 (2014).

    CAS  Google Scholar 

  17. Dulub, O., Diebold, U. & Kresse, G. Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. Phys. Rev. Lett. 90, 016102 (2003).

    Google Scholar 

  18. Barbier, A. et al. Atomic structure of the polar NiO(111)-p(2 × 2) surface. Phys. Rev. Lett. 84, 2897–2900 (2000).

    CAS  Google Scholar 

  19. Enterkin, J. A. et al. A homologous series of structures on the surface of SrTiO3(110). Nat. Mater. 9, 245–248 (2010).

    CAS  Google Scholar 

  20. Erdman, N. et al. The structure and chemistry of the TiO2-rich surface of SrTiO3 (001). Nature 419, 55–58 (2002).

    CAS  Google Scholar 

  21. Kienzle, D. M., Becerra-Toledo, A. E. & Marks, L. D. Vacant-site octahedral tilings on SrTiO3 (001), the (13 × 13) R 33.7° surface, and related structures. Phys. Rev. Lett. 106, 176102 (2011).

    CAS  Google Scholar 

  22. Kirkpatrick, T. R. & Wolynes, P. G. Stable and metastable states in mean-field Potts and structural glasses. Phys. Rev. B 36, 8552–8564 (1987).

    CAS  Google Scholar 

  23. Marks, L. D., Chiaramonti, A. N., Rahman, S. U. & Castell, M. R. Transition from order to configurational disorder for surface reconstructions on SrTiO3(111). Phys. Rev. Lett. 114, 226101 (2015).

    CAS  Google Scholar 

  24. Herman, G. S. Surface structure determination of CeO2 (001) by angle-resolved mass spectroscopy of recoiled ions. Phys. Rev. B 59, 14899–14902 (1999).

    CAS  Google Scholar 

  25. Kim, Y. J. et al. Growth and structure of epitaxial CeO2 by oxygen-plasma-assisted molecular beam epitaxy. J. Vac. Sci. Technol. 17, 926–935 (1999).

    CAS  Google Scholar 

  26. Nörenberg, H. & Harding, J. H. The surface structure of CeO2(001) single crystals studied by elevated temperature STM. Surf. Sci. 477, 17–24 (2001).

    Google Scholar 

  27. Solovyov, V. F. et al. Highly efficient solid state catalysis by reconstructed (001) ceria surface. Sci. Rep. 4, 4627 (2014).

    Google Scholar 

  28. Qiao, Z.-A., Wu, Z. & Dai, S. Shape-controlled ceria-based nanostructures for catalysis applications. ChemSusChem 6, 1821–1833 (2013).

    CAS  Google Scholar 

  29. Vilé, G., Colussi, S., Krumeich, F., Trovarelli, A. & Pérez-Ramírez, J. Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis. Angew. Chem. Int. Ed. 53, 12069–12072 (2014).

    Google Scholar 

  30. Agarwal, S., Mojet, B. L., Lefferts, L. & Datye, A. K. Catalysis by Materials with Well-Defined Structures 31–70 (Elsevier, 2015).

    Google Scholar 

  31. Mann, A. K. P., Wu, Z. & Overbury, S. H. Catalysis by Materials with Well-Defined Structures 71–97 (Elsevier, 2015).

    Google Scholar 

  32. Lin, Y., Wu, Z., Wen, J., Poeppelmeier, K. R. & Marks, L. D. Imaging the atomic surface structures of CeO2 nanoparticles. Nano Lett. 14, 191–196 (2014).

    CAS  Google Scholar 

  33. Pan, Y. et al. Ceria nanocrystals exposing wide (100) facets: structure and polarity compensation. Adv. Mater. Interfaces 1, 1400404 (2014).

    Google Scholar 

  34. Baudin, M., Wójcik, M. & Hermansson, K. Dynamics, structure and energetics of the (111), (011) and (001) surfaces of ceria. Surf. Sci. 468, 51–61 (2000).

    CAS  Google Scholar 

  35. Möbus, G. et al. Dynamics of polar surfaces on ceria nanoparticles observed in situ with single-atom resolution. Adv. Funct. Mater. 21, 1971–1976 (2011).

    Google Scholar 

  36. Bhatta, U. M. et al. Cationic surface reconstructions on cerium oxide nanocrystals: an aberration-corrected HRTEM study. ACS Nano 6, 421–430 (2012).

    CAS  Google Scholar 

  37. Dholabhai, P. P., Adams, J. B., Crozier, P. & Sharma, R. Oxygen vacancy migration in ceria and Pr-doped ceria: a DFT + U study. J. Chem. Phys. 132, 94104 (2010).

    Google Scholar 

  38. Grau-Crespo, R., Hamad, S., Catlow, C. R. A. & de Leeuw, N. H. Symmetry-adapted configurational modelling of fractional site occupancy in solids. J. Phys. Condens. Matter 19, 256201 (2007).

    Google Scholar 

  39. Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

    Google Scholar 

  40. Li, S.-C., Losovyj, Y., Paliwal, V. K. & Diebold, U. Photoemission study of azobenzene and aniline adsorbed on TiO2 anatase (101) and rutile (110) surfaces. J. Phys. Chem. C 115, 10173–10179 (2011).

    CAS  Google Scholar 

  41. Łodziana, Z., Nørskov, J. K. & Stoltze, P. The stability of the hydroxylated (0001) surface of α-Al2O3 . J. Chem. Phys. 118, 11179–11188 (2003).

    Google Scholar 

  42. Mullins, D. R. The surface chemistry of cerium oxide. Surf. Sci. Rep. 70, 42–85 (2015).

    CAS  Google Scholar 

  43. Gattinoni, C. & Michaelides, A. Atomistic details of oxide surfaces and surface oxidation: the example of copper and its oxides. Surf. Sci. Rep. 70, 424–447 (2015).

    CAS  Google Scholar 

  44. Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

    CAS  Google Scholar 

  45. Butler, K. T., Walsh, A., Cheetham, A. K. & Kieslich, G. Organised chaos: entropy in hybrid inorganic–organic systems and other materials. Chem. Sci. 7, 6316–6324 (2016).

    CAS  Google Scholar 

  46. Załuska-Kotur, M. A. The kinetic Potts model in the description of surface dynamics. Surf. Sci. 265, 196–208 (1992).

    Google Scholar 

  47. Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  50. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

    Google Scholar 

  51. Dudarev, S. L., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Google Scholar 

  52. Fabris, S., de Gironcoli, S., Baroni, S., Vicario, G. & Balducci, G. Reply to “Comment on ‘Taming multiple valency with density functionals: a case study of defective ceria’”. Phys. Rev. B 72, 237102 (2005).

    Google Scholar 

  53. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  54. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Google Scholar 

  55. Kümmerle, E. & Heger, G. The structures of C–Ce2O3+δ, Ce7O12, and Ce11O20 . J. Solid State Chem. 147, 485–500 (1999).

    Google Scholar 

  56. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    Google Scholar 

  57. Hoover, W. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    CAS  Google Scholar 

  58. Tersoff, J. & Hamann, D. R. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 50, 1998–2001 (1983).

    CAS  Google Scholar 

  59. Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the ERC Starting Grant and Proof of Concepts (ERC-2010-StG-258406, ERC-2015-PoC_680900), the Ministerio de Economía y Competitividad—MINECO (CTQ2015-68770-R), and the Generalitat de Catalunya—AGAUR (SGR-2014-SGR-145). M.C.-C. acknowledges MINECO for a ‘Juan de la Cierva—Formación’ fellowship (FJCI-2014-20568). We acknowledge BSC-RES and CSUC for providing generous computational resources. We thank R. Grau-Crespo (University of Reading) for kindly providing us with the SOD software and A. Selloni (Princeton University) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.C.-C. performed the calculations. M.C.-C. and N.L. analysed the data and prepared the manuscript.

Corresponding authors

Correspondence to Marçal Capdevila-Cortada or Núria López.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 11121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capdevila-Cortada, M., López, N. Entropic contributions enhance polarity compensation for CeO2(100) surfaces. Nature Mater 16, 328–334 (2017). https://doi.org/10.1038/nmat4804

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing