Modelling heterogeneous interfaces for solar water splitting


The generation of hydrogen from water and sunlight offers a promising approach for producing scalable and sustainable carbon-free energy. The key of a successful solar-to-fuel technology is the design of efficient, long-lasting and low-cost photoelectrochemical cells, which are responsible for absorbing sunlight and driving water splitting reactions. To this end, a detailed understanding and control of heterogeneous interfaces between photoabsorbers, electrolytes and catalysts present in photoelectrochemical cells is essential. Here we review recent progress and open challenges in predicting physicochemical properties of heterogeneous interfaces for solar water splitting applications using first-principles-based approaches, and highlights the key role of these calculations in interpreting increasingly complex experiments.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Two alternative mechanisms for water dissociation at surface oxygen bridges, as observed in the first-principles simulations of the full interface of liquid water with InP(001), when a submonolayer surface oxide is present.
Figure 2: Level alignment at the rutile TiO2(110)/water interface at the point of zero proton charge and flatband potential, as computed using DFT with semi-local (PBE and BLYP) and hybrid (HSE06) density functionals.
Figure 3: Valence band maxima (filled rectangles) and conduction band minima (open rectangles) of the Si(111) surface functionalized with various groups, as computed with the GW approximation.
Figure 4: Relative position of the conduction band minimum of WO3 (ECBM) and the Fermi level (EF) of IrO2, in the absence of water (left panel), and in the presence of water in contact with the absorber and the catalyst at the same time (right panel).


  1. 1

    Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  Google Scholar 

  2. 2

    McKone, J. R., Lewis, N. S. & Gray, H.B. Will solar-driven water-splitting devices see the light of day? Chem. Mater. 26, 407–414 (2013).

    Article  CAS  Google Scholar 

  3. 3

    Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  4. 4

    Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010).

    Article  CAS  Google Scholar 

  5. 5

    Esposito, D. V. et al. Methods of photoelectrode characterization with high spatial and temporal resolution. Energy Environ. Sci. 8, 2863–2885 (2015).

    Article  CAS  Google Scholar 

  6. 6

    Hydrogen and Fuel Cells Program Plan (Department of Energy, 2011).

  7. 7

    Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014).

    Article  CAS  Google Scholar 

  8. 8

    Abdi, F. F. et al. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 4, 1–7 (2013).

    Article  CAS  Google Scholar 

  9. 9

    Coridan, R. H., Shaner, M., Wiggenhorn, C., Brunschwig, B. S. & Lewis, N. S. Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. J. Phys. Chem. C 117, 6949–6957 (2013).

    Article  CAS  Google Scholar 

  10. 10

    Lichterman, M. F. et al. Stabilization of n-cadmium telluride photoanodes for water oxidation to O2 (g) in aqueous alkaline electrolytes using amorphous TiO2 films formed by atomic-layer deposition. Energy Environ. Sci. 7, 3334–3337 (2014).

    Article  CAS  Google Scholar 

  11. 11

    Benck, J. D. et al. Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials. Adv. Energy Mater. 4, 1400739 (2014).

    Article  CAS  Google Scholar 

  12. 12

    Kim, T. W. & Choi, K.-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343, 990–994 (2014).

    Article  CAS  Google Scholar 

  13. 13

    Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    Article  CAS  Google Scholar 

  14. 14

    May, M. M., Lewerenz, H.-J., Lackner, D., Dimroth, F. & Hannappel, T. Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat. Commun. 6, 8286 (2015).

    Article  CAS  Google Scholar 

  15. 15

    Smith, W. A., Sharp, I. D., Strandwitz, N. C. & Bisquert, J. Interfacial band-edge energetics for solar fuels production. Energy Environ. Sci. 8, 2851–2862 (2015).

    Article  CAS  Google Scholar 

  16. 16

    Chen, S. & Wang, L.-W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 24, 3659–3666 (2012).

    Article  CAS  Google Scholar 

  17. 17

    Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. & Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    Article  CAS  Google Scholar 

  18. 18

    Jain, A., Castelli, I. E., Hautier, G., Bailey, D. H. & Jacobsen, K. W. Performance of genetic algorithms in search for water splitting perovskites. J. Mater. Sci. 48, 6519–6534 (2013).

    Article  CAS  Google Scholar 

  19. 19

    Castelli, I. E. et al. New light-harvesting materials using accurate and efficient bandgap calculations. Adv. Energy Mater. 5, 1400915 (2015).

    Article  CAS  Google Scholar 

  20. 20

    Liao, P. & Carter, E. A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chem. Soc. Rev. 42, 2401–2422 (2013).

    Article  CAS  Google Scholar 

  21. 21

    Bhatt, M. D. & Lee, J. S. Recent theoretical progress in the development of photoanode materials for solar water splitting photoelectrochemical cells. J. Mater. Chem. A 3, 10632–10659 (2015).

    Article  CAS  Google Scholar 

  22. 22

    Burke, K. Perspective on density functional theory. J. Chem. Phys. 136, 150901 (2012).

    Article  CAS  Google Scholar 

  23. 23

    Vignale, G. & Rasolt, M. Density-functional theory in strong magnetic fields. Phys. Rev. Lett. 59, 2360 (1987).

    Article  CAS  Google Scholar 

  24. 24

    Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471 (1985).

    Article  CAS  Google Scholar 

  25. 25

    Sulpizi, M., Salanne, M., Sprik, M. & Gaigeot, M.-P. Vibrational sum frequency generation spectroscopy of the water liquid–vapor interface from density functional theory-based molecular dynamics simulations. J. Phys. Chem. Lett. 4, 83–87 (2012).

    Article  CAS  Google Scholar 

  26. 26

    Huang, P., Pham, T. A., Galli, G. & Schwegler, E. Alumina (0001)/water interface: structural properties and infrared spectra from first-principles molecular dynamics simulations. J. Phys. Chem. C 118, 8944–8951 (2014).

    Article  CAS  Google Scholar 

  27. 27

    Prendergast, D. & Galli, G. X-ray absorption spectra of water from first principles calculations. Phys. Rev. Lett. 96, 215502 (2006).

    Article  CAS  Google Scholar 

  28. 28

    Velasco-Velez, J.-J. et al. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science 346, 831–834 (2014).

    Article  CAS  Google Scholar 

  29. 29

    Cohen, A. J., Mori-Sánchez, P. & Yang, W. Challenges for density functional theory. Chem. Rev. 112, 289–320 (2011).

    Article  CAS  Google Scholar 

  30. 30

    Gillan, M. J., Alfè, D. & Michaelides, A. Perspective: how good is DFT for water? J. Chem. Phys. 144, 130901 (2016).

    Article  CAS  Google Scholar 

  31. 31

    Ping, Y., Rocca, D. & Galli, G. Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory. Chem. Soc. Rev. 42, 2437–2469 (2013).

    Article  CAS  Google Scholar 

  32. 32

    Grossman, J. C., Schwegler, E., Draeger, E. W., Gygi, F. & Galli, G. Towards an assessment of the accuracy of density functional theory for first principles simulations of water. J. Chem. Phys. 120, 300–311 (2004).

    Article  CAS  Google Scholar 

  33. 33

    Schwegler, E., Grossman, J. C., Gygi, F. & Galli, G. Towards an assessment of the accuracy of density functional theory for first principles simulations of water. II. J. Chem. Phys. 121, 5400–5409 (2004).

    Article  CAS  Google Scholar 

  34. 34

    Zhang, C., Donadio, D., Gygi, F. & Galli, G. First principles simulations of the infrared spectrum of liquid water using hybrid density functionals. J. Chem. Theory Comput. 7, 1443–1449 (2011).

    Article  CAS  Google Scholar 

  35. 35

    Wan, Q., Spanu, L., Gygi, F. & Galli, G. Electronic structure of aqueous sulfuric acid from first-principles simulations with hybrid functionals. J. Phys. Chem. Lett. 5, 2562–2567 (2014).

    Article  CAS  Google Scholar 

  36. 36

    Zhang, C., Pham, T. A., Gygi, F. & Galli, G. Electronic structure of the solvated chloride anion from first principles molecular dynamics. J. Chem. Phys. 138, 181102 (2013).

    Article  CAS  Google Scholar 

  37. 37

    Gaiduk, A. P., Zhang, C., Gygi, F. & Galli, G. Structural and electronic properties of aqueous NaCl solutions from ab initio molecular dynamics simulations with hybrid density functionals. Chem. Phys. Lett. 604, 89–96 (2014).

    Article  CAS  Google Scholar 

  38. 38

    DiStasio, R. A. Jr, Santra, B., Li, Z., Wu, X. & Car, R. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water. J. Chem. Phys. 141, 084502 (2014).

    Article  CAS  Google Scholar 

  39. 39

    Wang, J., Román-Pérez, G., Soler, J. M., Artacho, E. & Fernández-Serra, M.-V. Density, structure, and dynamics of water: the effect of van der Waals interactions. J. Chem. Phys. 134, 024516 (2011).

    Article  CAS  Google Scholar 

  40. 40

    Wróbel, J., Kurzydłowski, K. J., Hummer, K., Kresse, G. & Piechota, J. Calculations of ZnO properties using the Heyd-Scuseria-Ernzerhof screened hybrid density functional. Phys. Rev. B 80, 155124 (2009).

    Article  CAS  Google Scholar 

  41. 41

    Janotti, A. et al. Hybrid functional studies of the oxygen vacancy in TiO2 . Phys. Rev. B 81, 085212 (2010).

    Article  CAS  Google Scholar 

  42. 42

    Kweon, K. E. & Hwang, G. S. Structural phase-dependent hole localization and transport in bismuth vanadate. Phys. Rev. B 87, 205202 (2013).

    Article  CAS  Google Scholar 

  43. 43

    Ping, Y., Goddard, W. A. III & Galli, G. A. Energetics and solvation effects at the photoanode/catalyst interface: ohmic contact versus Schottky barrier. J. Am. Chem. Soc. 137, 5264–5267 (2015).

    Article  CAS  Google Scholar 

  44. 44

    Ataca, C., Sahin, H. & Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012).

    Article  CAS  Google Scholar 

  45. 45

    Niu, P., Zhang, L., Liu, G. & Cheng, H.-M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Energy Mater. 22, 4763–4770 (2012).

    CAS  Google Scholar 

  46. 46

    Singh, A. K., Mathew, K., Zhuang, H. L. & Hennig, R. G. Computational screening of 2D materials for photocatalysis. J. Phys. Chem. Lett. 6, 1087–1098 (2015).

    Article  CAS  Google Scholar 

  47. 47

    Cheng, J., VandeVondele, J. & Sprik, M. Identifying trapped electronic holes at the aqueous TiO2 interface. J. Phys. Chem. C 118, 5437–5444 (2014).

    Article  CAS  Google Scholar 

  48. 48

    Dawson, W. & Gygi, F. Performance and accuracy of recursive subspace bisection for hybrid DFT calculations in inhomogeneous systems. J. Chem. Theory Comput. 11, 4655–4663 (2015).

    Article  CAS  Google Scholar 

  49. 49

    Zhang, C., Wu, J., Galli, G. & Gygi, F. Structural and vibrational properties of liquid water from van der Waals density functionals. J. Chem. Theory Comput. 7, 3054–3061 (2011).

    Article  CAS  Google Scholar 

  50. 50

    Marsman, M., Paier, J., Stroppa, A. & Kresse, G. Hybrid functionals applied to extended systems. J. Phys. Condens. Matter 20, 064201 (2008).

    Article  CAS  Google Scholar 

  51. 51

    Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J. Phys. Condens. Matter 9, 767 (1997).

    Article  CAS  Google Scholar 

  52. 52

    Skone, J. H., Govoni, M. & Galli, G. Self-consistent hybrid functional for condensed systems. Phys. Rev. B 89, 195112 (2014).

    Article  CAS  Google Scholar 

  53. 53

    Kulik, H. J., Cococcioni, M., Scherlis, D. A. & Marzari, N. Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys. Rev. Lett. 97, 103001 (2006).

    Article  CAS  Google Scholar 

  54. 54

    Mosey, N. J., Liao, P. & Carter, E. A. Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT + U calculations. J. Chem. Phys. 129, 014103 (2008).

    Article  CAS  Google Scholar 

  55. 55

    Hybertsen, M. S. & Louie, S. G. First-principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators. Phys. Rev. Lett. 55, 1418–1421 (1985).

    Article  CAS  Google Scholar 

  56. 56

    Pham, T. A. et al. Band offset and dielectric properties of the amorphous Si3N4/Si(001) interface: a first-principles study. Appl. Phys. Lett. 102, 241603 (2013).

    Article  CAS  Google Scholar 

  57. 57

    Pham, T. A., Zhang, C., Schwegler, E. & Galli, G. Probing the electronic structure of liquid water with many-body perturbation theory. Phys. Rev. B 89, 060202 (2014).

    Article  CAS  Google Scholar 

  58. 58

    Opalka, D., Pham, T. A., Sprik, M. & Galli, G. The ionization potential of aqueous hydroxide computed using many-body perturbation theory. J. Chem. Phys. 141, 034501 (2014).

    Article  CAS  Google Scholar 

  59. 59

    Opalka, D., Pham, T. A., Galli, G. & Sprik, M. Electronic energy levels and band alignment for aqueous phenol and phenolate from first principles. J. Phys. Chem. B 119, 9651–9660 (2015).

    Article  CAS  Google Scholar 

  60. 60

    Nguyen, H.-V., Pham, T. A., Rocca, D. & Galli, G. Improving accuracy and efficiency of calculations of photoemission spectra within many-body perturbation theory. Phys. Rev. B 85, 081101 (2012).

    Article  CAS  Google Scholar 

  61. 61

    Pham, T. A., Nguyen, H.-V., Rocca, D. & Galli, G. GW calculations using the spectral decomposition of the dielectric matrix: verification, validation, and comparison of methods. Phys. Rev. B 87, 155148 (2013).

    Article  CAS  Google Scholar 

  62. 62

    Pham, T. A., Lee, D., Schwegler, E. & Galli, G. Interfacial effects on the band edges of functionalized Si surfaces in liquid water. J. Am. Chem. Soc. 136, 17071–17077 (2014).

    Article  CAS  Google Scholar 

  63. 63

    Govoni, M. & Galli, G. Large scale GW calculations. J. Chem. Theory Comput. 11, 2680–2696 (2015).

    Article  CAS  Google Scholar 

  64. 64

    Cheng, J. & Sprik, M. Aligning electronic energy levels at the TiO2/H2O interface. Phys. Rev. B 82, 081406 (2010).

    Article  CAS  Google Scholar 

  65. 65

    Wood, B. C., Schwegler, E., Choi, W. I. & Ogitsu, T. Hydrogen-bond dynamics of water at the interface with InP/GaP (001) and the implications for photoelectrochemistry. J. Am. Chem. Soc. 135, 15774–15783 (2013).

    Article  CAS  Google Scholar 

  66. 66

    Wood, B. C., Schwegler, E., Choi, W. I. & Ogitsu, T. Surface chemistry of GaP (001) and InP (001) in contact with water. J. Phys. Chem. C 118, 1062–1070 (2014).

    Article  CAS  Google Scholar 

  67. 67

    Shen, X. et al. Photocatalytic water oxidation at the GaN (101IE0)- water interface. J. Phys. Chem. C 114, 13695–13704 (2010).

    Article  CAS  Google Scholar 

  68. 68

    Wang, J., Pedroza, L. S., Poissier, A. & Fernández-Serra, M. Water dissociation at the GaN (10 0) surface: structure, dynamics and surface acidity. J. Phys. Chem. C 116, 14382–14389 (2012).

    Article  CAS  Google Scholar 

  69. 69

    Kharche, N., Muckerman, J. T. & Hybertsen, M. S. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces. Phys. Rev. Lett. 113, 176802 (2014).

    Article  CAS  Google Scholar 

  70. 70

    English, N. J., Rahman, M., Wadnerkar, N. & MacElroy, J. Photo-active and dynamical properties of hematite (Fe2O3)–water interfaces: an experimental and theoretical study. Phys. Chem. Chem. Phys. 16, 14445–14454 (2014).

    Article  CAS  Google Scholar 

  71. 71

    Sun, C., Liu, L.-M., Selloni, A., Lu, G. Q. M. & Smith, S. C. Titania-water interactions: a review of theoretical studies. J. Mater. Chem. 20, 10319–10334 (2010).

    Article  CAS  Google Scholar 

  72. 72

    Liu, L.-M., Zhang, C., Thornton, G. & Michaelides, A. Structure and dynamics of liquid water on rutile TiO2 (110). Phys. Rev. B 82, 161415 (2010).

    Article  CAS  Google Scholar 

  73. 73

    Duncan, D. A., Allegretti, F. & Woodruff, D. Water does partially dissociate on the perfect TiO2 (110) surface: a quantitative structure determination. Phys. Rev. B 86, 045411 (2012).

    Article  CAS  Google Scholar 

  74. 74

    Kumar, N., Kent, P. R., Wesolowski, D. J. & Kubicki, J. D. Modeling water adsorption on rutile (110) using van der Waals density functional and DFT + U methods. J. Phys. Chem. C 117, 23638–23644 (2013).

    Article  CAS  Google Scholar 

  75. 75

    De Angelis, F., Di Valentin, C., Fantacci, S., Vittadini, A. & Selloni, A. Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem. Rev. 114, 9708–9753 (2014).

    Article  CAS  Google Scholar 

  76. 76

    Allegretti, F., O’Brien, S., Polcik, M., Sayago, D. I. & Woodruff, D. P. Adsorption bond length for H2O on TiO2 (110): a key parameter for theoretical understanding. Phys. Rev. Lett. 95, 226104 (2005).

    Article  CAS  Google Scholar 

  77. 77

    Allegretti, F., O’Brien, S., Polcik, M., Sayago, D. I. & Woodruff, D. P. Quantitative determination of the local structure of H2O on TiO2 (110) using scanned-energy mode photoelectron diffraction. Surf. Sci. 600, 1487–1496 (2006).

    Article  CAS  Google Scholar 

  78. 78

    Walle, L., Borg, A., Uvdal, P. & Sandell, A. Experimental evidence for mixed dissociative and molecular adsorption of water on a rutile TiO2 (110) surface without oxygen vacancies. Phys. Rev. B 80, 235436 (2009).

    Article  CAS  Google Scholar 

  79. 79

    Hahn, K. R., Tricoli, A., Santarossa, G., Vargas, A. & Baiker, A. First principles analysis of H2O adsorption on the (110) surfaces of SnO2, TiO2 and their solid solutions. Langmuir 28, 1646–1656 (2011).

    Article  CAS  Google Scholar 

  80. 80

    Lindan, P. J., Harrison, N. & Gillan, M. Mixed dissociative and molecular adsorption of water on the rutile (110) surface. Phys. Rev. Lett. 80, 762 (1998).

    Article  CAS  Google Scholar 

  81. 81

    Zhang, C. & Lindan, P. J. Multilayer water adsorption on rutile TiO2 (110): a first-principles study. J. Chem. Phys. 118, 4620–4630 (2003).

    Article  CAS  Google Scholar 

  82. 82

    Kumar, N. et al. Hydrogen bonds and vibrations of water on (110) rutile. J. Phys. Chem. C 113, 13732–13740 (2009).

    Article  CAS  Google Scholar 

  83. 83

    Harris, L. A. & Quong, A. A. Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110). Phys. Rev. Lett. 93, 086105 (2004).

    Article  CAS  Google Scholar 

  84. 84

    Wan, Q. & Galli, G. First-principles framework to compute sum-frequency generation vibrational spectra of semiconductors and insulators. Phys. Rev. Lett. 115, 246404 (2015).

    Article  CAS  Google Scholar 

  85. 85

    Toroker, M. C. et al. First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. Phys. Chem. Chem. Phys. 13, 16644–16654 (2011).

    Article  CAS  Google Scholar 

  86. 86

    Jiang, H. Electronic band structures of molybdenum and tungsten dichalcogenides by the GW approach. J. Phys. Chem. C 116, 7664–7671 (2012).

    Article  CAS  Google Scholar 

  87. 87

    Stevanović, V., Lany, S., Ginley, D. S., Tumas, W. & Zunger, A. Assessing capability of semiconductors to split water using ionization potentials and electron affinities only. Phys. Chem. Chem. Phys. 16, 3706–3714 (2014).

    Article  CAS  Google Scholar 

  88. 88

    Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  89. 89

    Cheng, J. & Sprik, M. Alignment of electronic energy levels at electrochemical interfaces. Phys. Chem. Chem. Phys. 14, 11245–11267 (2012).

    Article  CAS  Google Scholar 

  90. 90

    Wu, Y., Chan, M. K. Y. & Ceder, G. Prediction of semiconductor band edge positions in aqueous environments from first principles. Phys. Rev. B 83, 235301 (2011).

    Article  CAS  Google Scholar 

  91. 91

    Li, Y., O’Leary, L. E., Lewis, N. S. & Galli, G. Combined theoretical and experimental study of band-edge control of Si through surface functionalization. J. Phys. Chem. C 117, 5188–5194 (2013).

    Article  CAS  Google Scholar 

  92. 92

    Ping, Y., Sundararaman, R. & Goddard, W. A. III Solvation effects on the band edge positions of photocatalysts from first principles. Phys. Chem. Chem. Phys. 17, 30499–30509 (2015).

    Article  CAS  Google Scholar 

  93. 93

    McCrory, C. C. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    Article  CAS  Google Scholar 

  94. 94

    Spurgeon, J. M., Velazquez, J. M. & McDowell, M. T. Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte. Phys. Chem. Chem. Phys. 16, 3623–3631 (2014).

    Article  CAS  Google Scholar 

  95. 95

    Sundararaman, R., Schwarz, K. A., Letchworth-Weaver, K. & Arias, T. Spicing up continuum solvation models with SaLSA: the spherically averaged liquid susceptibility ansatz. J. Chem. Phys. 142, 054102 (2015).

    Article  CAS  Google Scholar 

  96. 96

    Sundararaman, R. & Goddard, W. A. III The charge-asymmetric nonlocally determined local-electric (CANDLE) solvation model. J. Chem. Phys. 142, 064107 (2015).

    Article  CAS  Google Scholar 

  97. 97

    Kim, T. W., Ping, Y., Galli, G. A. & Choi, K.-S. Simultaneous enhancements in photon absorption and charge transport of bismuth vanadate photoanodes for solar water splitting. Nat. Commun. 6, 8769 (2015).

    Article  CAS  Google Scholar 

  98. 98

    Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  CAS  Google Scholar 

  99. 99

    Fang, Y.-H. & Liu, Z.-P. Mechanism and tafel lines of electro-oxidation of water to oxygen on RuO2 (110). J. Am. Chem. Soc. 132, 18214–18222 (2010).

    Article  CAS  Google Scholar 

  100. 100

    Huang, Y., Nielsen, R. J., Goddard, W. A. III & Soriaga, M. P. The reaction mechanism with free energy barriers for electrochemical dihydrogen evolution on MoS2 . J. Am. Chem. Soc. 137, 6692–6698 (2015).

    Article  CAS  Google Scholar 

  101. 101

    Xiao, H., Cheng, T., Goddard, W. A. III & Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu (111). J. Am. Chem. Soc. 138, 483–486 (2016).

    Article  CAS  Google Scholar 

  102. 102

    Letchworth-Weaver, K. & Arias, T. Joint density functional theory of the electrode-electrolyte interface: application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Phys. Rev. B 86, 075140 (2012).

    Article  CAS  Google Scholar 

  103. 103

    Gunceler, D., Letchworth-Weaver, K., Sundararaman, R., Schwarz, K. A. & Arias, T. The importance of nonlinear fluid response in joint density-functional theory studies of battery systems. Model. Simul. Mater. Sci. 21, 074005 (2013).

    Article  Google Scholar 

  104. 104

    Atalla, V., Yoon, M., Caruso, F., Rinke, P. & Scheffler, M. Hybrid density functional theory meets quasiparticle calculations: a consistent electronic structure approach. Phys. Rev. B 88, 165122 (2013).

    Article  CAS  Google Scholar 

  105. 105

    Cheng, H. & Selloni, A. Hydroxide ions at the water/anatase TiO2 (101) interface: structure and electronic states from first principles molecular dynamics. Langmuir 26, 11518–11525 (2010).

    Article  CAS  Google Scholar 

  106. 106

    Cheng, J. & Sprik, M. The electric double layer at a rutile TiO2 water interface modelled using density functional theory based molecular dynamics simulation. J. Phys. Condens. Matter 26, 244108 (2014).

    Article  CAS  Google Scholar 

  107. 107

    Laio, A. & Gervasio, F. L. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep. Prog. Phys. 71, 126601 (2008).

    Article  CAS  Google Scholar 

  108. 108

    Otani, M. & Sugino, O. First-principles calculations of charged surfaces and interfaces: a plane-wave nonrepeated slab approach. Phys. Rev. B 73, 115407 (2006).

    Article  CAS  Google Scholar 

  109. 109

    Bonnet, N., Morishita, T., Sugino, O. & Otani, M. First-principles molecular dynamics at a constant electrode potential. Phys. Rev. Lett. 109, 266101 (2012).

    Article  CAS  Google Scholar 

  110. 110

    Gaiduk, A. P. et al. Photoelectron spectra of aqueous solutions from first principles. J. Am. Chem. Soc. 138, 6912–6915 (2016).

    Article  CAS  Google Scholar 

  111. 111

    Morbec, J. M., Narkeviciute, I., Jaramillo, T. F. & Galli, G. Optoelectronic properties of Ta3N5: a joint theoretical and experimental study. Phys. Rev. B 90, 155204 (2014).

    Article  CAS  Google Scholar 

  112. 112

    Akimov, A. V., Neukirch, A. J. & Prezhdo, O. V. Theoretical insights into photoinduced charge transfer and catalysis at oxide interfaces. Chem. Rev. 113, 4496–4565 (2013).

    Article  CAS  Google Scholar 

  113. 113

    Pastore, M. & Angelis, F. D. First-principles modeling of a dye-sensitized TiO2/IrO2 photoanode for water oxidation. J. Am. Chem. Soc. 137, 5798–5809 (2015).

    Article  CAS  Google Scholar 

Download references


This work was supported by the NSF-CCI grant (CHE-1305124). Part of this work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. T.A.P. acknowledges support from the Lawrence Fellowship. We thank B. Wood, T. Ogitsu and E. Schwegler for useful discussions.

Author information




All authors contributed to the discussion and writing of the manuscript.

Corresponding authors

Correspondence to Tuan Anh Pham or Yuan Ping or Giulia Galli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pham, T., Ping, Y. & Galli, G. Modelling heterogeneous interfaces for solar water splitting. Nature Mater 16, 401–408 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing