High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography


Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure–property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP). This method enables 3D image reconstruction of a crystal volume from a series of two-dimensional X-ray Bragg coherent intensity diffraction patterns measured at a single incident beam angle. Structural information about the sample is encoded along two reciprocal-space directions normal to the Bragg diffracted exit beam, and along the third dimension in real space by the scanning beam. We present our approach with an analytical derivation, a numerical demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Encoding 3D structure at a single Bragg angle.
Figure 2: The principles of 3DBPP.
Figure 3: Experimental geometry.
Figure 4: 3D Bragg projection ptychography experimental results.
Figure 5: Comparison with linear elastic model.


  1. 1

    Clark, J. N. et al. Three-dimensional imaging of dislocation propagation during crystal growth and dissolution. Nat. Mater. 14, 780–784 (2015).

    CAS  Google Scholar 

  2. 2

    Ulvestad, A. et al. Topological defect dynamics in operando battery nanoparticles. Science 348, 1344–1347 (2015).

    CAS  Google Scholar 

  3. 3

    Yang, W. et al. Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure. Nat. Commun. 4, 1680 (2013).

    CAS  Google Scholar 

  4. 4

    Watari, M. et al. Differential stress induced by thiol adsorption on facetted nanocrystals. Nat. Mater. 10, 862–866 (2011).

    CAS  Google Scholar 

  5. 5

    Clark, J. N. et al. Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. Science 341, 56–59 (2013).

    CAS  Google Scholar 

  6. 6

    Sayre, D. Some implications of a theorem due to Shannon. Acta Crystallogr. 5, 843 (1952).

    Google Scholar 

  7. 7

    Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    CAS  Google Scholar 

  8. 8

    Miao, J., Ishikawa, T., Robinson, I. K. & Murnane, M. M. Beyond crystallography: diffractive imaging using coherent X-ray light sources. Science 348, 530–535 (2015).

    CAS  Google Scholar 

  9. 9

    Hoppe, W. Beugung im inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen. Acta Crystallogr. A 25, 495–501 (1969).

    Google Scholar 

  10. 10

    Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007).

    CAS  Google Scholar 

  11. 11

    Rodenburg, J. M. & Faulkner, H. M. L. A phase retrieval algorithm for shifting illumination. Appl. Phys. Lett. 20, 4795–4797 (2004).

    Google Scholar 

  12. 12

    Thibault, P. et al. High resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Dierolf, M. et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 467, 436–439 (2010).

    CAS  Google Scholar 

  14. 14

    Takahashi, Y. et al. Bragg X-ray ptychography of a silicon crystal: visualization of the dislocation strain field and the production of a vortex beam. Phys. Rev. B 87, 121201 (2013).

    Google Scholar 

  15. 15

    Zhang, F. et al. Translation position determination in ptychographic coherent diffraction imaging. Opt. Express 21, 13592–13606 (2013).

    Google Scholar 

  16. 16

    Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494, 68–71 (2013).

    CAS  Google Scholar 

  17. 17

    Maiden, A. M., Humphry, M. J. & Rodenburg, J. M. Ptychographic transmission microscopy in three dimensions using a multi-slice approach. J. Opt. Soc. Am. A 29, 1606–1614 (2012).

    CAS  Google Scholar 

  18. 18

    Raines, K. S. et al. Three-dimensional structure determination from a single view. Nature 463, 214–217 (2010).

    CAS  Google Scholar 

  19. 19

    Van Dyck, D., Jinschek, J. R. & Fu-Rong, C. ‘Big Bang’ tomography as a new route to atomic-resolution electron tomography. Nature 486, 243–246 (2012).

    CAS  Google Scholar 

  20. 20

    Pfeifer, M. A., Williams, G. J., Vartanyants, I. A., Harder, R. & Robinson, I. K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442, 63–66 (2006).

    CAS  Google Scholar 

  21. 21

    Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik (Jena) 35, 237–246 (1972).

    Google Scholar 

  22. 22

    Godard, P., Allain, M. & Chamard, V. Imaging of highly inhomogeneous strain field in nanocrystals using X-ray Bragg ptychography: a numerical study. Phys. Rev. B 84, 144109 (2011).

    Google Scholar 

  23. 23

    Godard, P. et al. Three-dimensional high-resolution quantitative microscopy of extended crystals. Nat. Commun. 2, 568 (2011).

    CAS  Google Scholar 

  24. 24

    Berenguer, F. et al. X-ray lensless microscopy from undersampled diffraction intensities. Phys. Rev. B 88, 144101 (2013).

    Google Scholar 

  25. 25

    Chamard, V. et al. Strain in a silicon-on-insulator nanostructure revealed by 3D X-ray Bragg ptychography. Sci. Rep. 5, 9827 (2015).

    CAS  Google Scholar 

  26. 26

    Hruszkewycz, S. O. et al. Quantitative nanoscale imaging of lattice distortions in epitaxial semiconductor heterostructures using nanofocused X-ray Bragg projection ptychography. Nano Lett. 12, 5148–5154 (2012).

    CAS  Google Scholar 

  27. 27

    Hruszkewycz, S. O. et al. Imaging local polarization in ferroelectric thin films by coherent X-ray Bragg projection ptychography. Phys. Rev. Lett. 110, 177601 (2013).

    CAS  Google Scholar 

  28. 28

    Hruszkewycz, S. O. et al. Efficient modeling of Bragg coherent X-ray nanobeam diffraction. Opt. Lett. 40, 3241–3244 (2015).

    CAS  Google Scholar 

  29. 29

    Kak, A. C. & Slaney, M. Principles of Computerized Tomographic Imaging (IEEE, 1988).

    Google Scholar 

  30. 30

    Natterer, F. & Wübbeling, F. Mathematical Methods in Image Reconstruction (SIAM, 2001).

    Google Scholar 

  31. 31

    Vartanyants, I. A. & Robinson, I. K. Partial coherence effects on the imaging of small crystals using coherent X-ray diffraction. J. Phys. Condens. Matter 13, 10593–10611 (2001).

    CAS  Google Scholar 

  32. 32

    Labat, S., Chamard, V. & Thomas, O. Local strain in a 3D nano-crystal revealed by 2D coherent X-ray diffraction imaging. Thin Solid Films 515, 5557–5562 (2007).

    CAS  Google Scholar 

  33. 33

    Elser, V. Phase retrieval by iterated projections. J. Opt. Soc. Am. A 20, 40–55 (2003).

    Google Scholar 

  34. 34

    Maiden, A. M. & Rodenburg, J. M. An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009).

    CAS  Google Scholar 

  35. 35

    Godard, P., Allain, M., Chamard, V. & Rodenburg, J. M. Noise models for low counting rate coherent diffraction imaging. Opt. Express 20, 25914–25934 (2012).

    Google Scholar 

  36. 36

    Thibault, P. & Guizar-Sicairos, M. Maximum-likelihood refinement for coherent diffractive imaging. New J. Phys. 14, 063004 (2012).

    Article  Google Scholar 

  37. 37

    Guizar-Sicairos, M. & Fienup, J. R. Phase retrieval with transverse translation diversity: a nonlinear optimization approach. Opt. Express 10, 7264–7278 (2008).

    Google Scholar 

  38. 38

    Nocedal, J. & Wright, S. J. Numerical Optimization (Springer, 2006).

    Google Scholar 

  39. 39

    Bertero, M. & Boccacci, P. Introduction to Inverse Problems in Imaging (IoP Publishing, 1998).

    Google Scholar 

  40. 40

    Miao, J., Sayer, D. & Chapman, H. N. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. A 15, 1662–1669 (1998).

    Google Scholar 

  41. 41

    Holt, M. V. et al. Strain imaging of nanoscale semiconductor heterostructures with X-ray Bragg projection ptychography. Phys. Rev. Lett. 112, 165502 (2014).

    Google Scholar 

  42. 42

    Hruszkewycz, S. O. et al. Structural sensitivity of X-ray Bragg projection ptychography to domain patterns in epitaxial thin films. Phys. Rev. A 94, 043803 (2016).

    Google Scholar 

  43. 43

    van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. J. Struct. Biol. 151, 250–262 (2005).

    CAS  Google Scholar 

  44. 44

    Vila-Comamala, J. et al. Characterization of high-resolution diffractive X-ray optics by ptychographic coherent diffraction imaging. Opt. Express 19, 21333–21344 (2011).

    Google Scholar 

  45. 45

    Murray, C. E. et al. Submicron mapping of silicon-on-insulator strain distributions induced by stressed liner structures. J. Appl. Phys. 104, 013530 (2008).

    Google Scholar 

  46. 46

    Xu, R. et al. Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat. Mater. 14, 1099–1103 (2015).

    CAS  Google Scholar 

  47. 47

    Holt, J. R. et al. Observation of semiconductor device channel strain using in-line high resolution X-ray diffraction. J. Appl. Phys. 114, 154502 (2013).

    Google Scholar 

  48. 48

    Winarski, R. P. et al. A hard X-ray nanoprobe beamline for nanoscale microscopy. J. Synchrotron Radiat. 19, 1056–1060 (2012).

    CAS  Google Scholar 

  49. 49

    Hruszkewycz, S. O. et al. Coherent Bragg nanodiffraction at the Hard X-ray Nanoprobe beamline. Phil. Trans. R. Soc. A 372, 20130118 (2014).

    CAS  Google Scholar 

  50. 50

    Vine, D. J. et al. Ptychographic Fresnel coherent diffractive imaging. Phys. Rev. A 80, 063823 (2009).

    Google Scholar 

Download references


3DBPP simulations and experimental measurements were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Design of the 3DBPP phase retrieval algorithm was partially funded by the French ANR under project number ANR-11-BS10-0005 and the French OPTITEC cluster. Use of the Center for Nanoscale Materials and the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Sample manufacturing was performed by the Research Alliance Teams at various IBM Research and Development facilities. The authors also acknowledge A. Pateras for fruitful discussion and A. Diaz for comments on the manuscript.

Author information




The 3DBPP method was established by S.O.H., M.A. and V.C., following the original idea of S.O.H. Samples were prepared by C.E.M. and J.R.H. Experimental measurements were performed by S.O.H., M.V.H., C.E.M. and P.H.F. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to S. O. Hruszkewycz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 884 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hruszkewycz, S., Allain, M., Holt, M. et al. High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography. Nature Mater 16, 244–251 (2017). https://doi.org/10.1038/nmat4798

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing