Abstract

In recent years, enhanced light–matter interactions through a plethora of dipole-type polaritonic excitations have been observed in two-dimensional (2D) layered materials. In graphene, electrically tunable and highly confined plasmon-polaritons were predicted and observed, opening up opportunities for optoelectronics, bio-sensing and other mid-infrared applications. In hexagonal boron nitride, low-loss infrared-active phonon-polaritons exhibit hyperbolic behaviour for some frequencies, allowing for ray-like propagation exhibiting high quality factors and hyperlensing effects. In transition metal dichalcogenides, reduced screening in the 2D limit leads to optically prominent excitons with large binding energy, with these polaritonic modes having been recently observed with scanning near-field optical microscopy. Here, we review recent progress in state-of-the-art experiments, and survey the vast library of polaritonic modes in 2D materials, their optical spectral properties, figures of merit and application space. Taken together, the emerging field of 2D material polaritonics and their hybrids provide enticing avenues for manipulating light–matter interactions across the visible, infrared to terahertz spectral ranges, with new optical control beyond what can be achieved using traditional bulk materials.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

References

  1. 1.

    Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957).

  2. 2.

    The theory of electromagnetic waves in a crystal in which excitons are produced. Sov. Phys. JETP 6, 785 (1958).

  3. 3.

    Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

  4. 4.

    et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

  5. 5.

    et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

  6. 6.

    & Chiral plasmons without magnetic field. Proc. Natl Acad. Sci. USA 113, 4658–4663 (2016).

  7. 7.

    et al. Chiral plasmon in gapped Dirac systems. Phys. Rev. B 93, 041413 (2016).

  8. 8.

    et al. Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett. 113, 106802 (2014).

  9. 9.

    , & Anisotropic 2D materials for tunable hyperbolic plasmonics. Phys. Rev. Lett. 116, 066804 (2016).

  10. 10.

    et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014).

  11. 11.

    et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014).

  12. 12.

    et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons. Nanophotonics 4, 44–68 (2015).

  13. 13.

    et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon. 9, 674–678 (2015).

  14. 14.

    , & Mid-infrared nanophotonics: probing hyperbolic polaritons. Nat. Photon. 9, 638–640 (2015).

  15. 15.

    et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015).

  16. 16.

    et al. Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015).

  17. 17.

    et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

  18. 18.

    , , , & Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

  19. 19.

    et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

  20. 20.

    et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

  21. 21.

    et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

  22. 22.

    et al. Tightly bound trions in monolayer MoS2. Nat. Mater. 12, 207–211 (2013).

  23. 23.

    et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotech. 8, 634–638 (2013).

  24. 24.

    et al. Observation of biexcitons in monolayer WSe2. Nat. Phys. 11, 477–481 (2015).

  25. 25.

    et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).

  26. 26.

    et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 1, 025001 (2014).

  27. 27.

    et al. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Sci. Appl. 4, e312 (2015).

  28. 28.

    et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotech. 10, 517–521 (2015).

  29. 29.

    , , , & Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

  30. 30.

    & Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

  31. 31.

    Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

  32. 32.

    Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).

  33. 33.

    & Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  34. 34.

    How to deal with the loss in plasmonics and metamaterials. Nat. Nanotech. 10, 2–6 (2015).

  35. 35.

    & Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B 76, 153410 (2007).

  36. 36.

    , & Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

  37. 37.

    , & Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

  38. 38.

    , , & Fields radiated by a nanoemitter in a graphene sheet. Phys. Rev. B 84, 195446 (2011).

  39. 39.

    & Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8, 1086–1101 (2014).

  40. 40.

    et al. Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotech. 6, 630–634 (2011).

  41. 41.

    et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photon. 7, 394–399 (2013).

  42. 42.

    et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).

  43. 43.

    et al. Electrical control of optical emitter relaxation pathways enabled by graphene. Nat. Phys. 11, 281–287 (2015).

  44. 44.

    et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

  45. 45.

    et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

  46. 46.

    et al. Plasmon losses due to electron-phonon scattering: The case of graphene encapsulated in hexagonal boron nitride. Phys. Rev. B 90, 165408 (2014).

  47. 47.

    et al. Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns. Science 344, 1369–1373 (2014).

  48. 48.

    et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

  49. 49.

    , , , & Novel midinfrared plasmonic properties of bilayer graphene. Phys. Rev. Lett. 112, 116801 (2014).

  50. 50.

    et al. Tunneling plasmonics in bilayer graphene. Nano Lett. 15, 4973–4978 (2015).

  51. 51.

    , , , & Tunable phonon-induced transparency in bilayer graphene nanoribbons. Nano Lett. 14, 4581–4586 (2014).

  52. 52.

    , , , & Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7, 151–157 (2008).

  53. 53.

    et al. Gate tunable infrared phonon anomalies in bilayer graphene. Phys. Rev. Lett. 103, 116804 (2009).

  54. 54.

    , , & Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotech. 7, 494–498 (2012).

  55. 55.

    , , & Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

  56. 56.

    et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014).

  57. 57.

    & Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

  58. 58.

    et al. Quantum oscillations in a two-dimensional electron gas in black phosphorus thin films. Nat. Nanotech. 10, 608–613 (2015).

  59. 59.

    et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotech. 10, 534–540 (2015).

  60. 60.

    , & Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

  61. 61.

    , , , & High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

  62. 62.

    , , & Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

  63. 63.

    et al. Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5, 3087 (2014).

  64. 64.

    et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5, 3252 (2014).

  65. 65.

    et al. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors. Adv. Opt. Mater. 2, 641–645 (2014).

  66. 66.

    , , & Hyperbolic metamaterials. Nat. Photon. 7, 948–957 (2013).

  67. 67.

    , & Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Exp. 14, 8247–8256 (2006).

  68. 68.

    , , , & Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686–1686 (2007).

  69. 69.

    et al. Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett. 16, 3858–3865 (2016).

  70. 70.

    , & Indefinite by nature: from ultraviolet to terahertz. ACS Photon. 1, 293–303 (2014).

  71. 71.

    , & Compendium of natural hyperbolic materials. Opt. Exp. 23, 25406–25424 (2015).

  72. 72.

    & Metamaterials: naturally hyperbolic. Nat. Photon. 9, 214–216 (2015).

  73. 73.

    , , & Indefinite permittivity and negative refraction in natural material: graphite. Appl. Phys. Lett. 98, 101901 (2011).

  74. 74.

    & Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2. Phys. Rev. B 3, 4286–4292 (1971).

  75. 75.

    et al. Topological insulators are tunable waveguides for hyperbolic polaritons. Phys. Rev. B 92, 205430 (2015).

  76. 76.

    et al. Tetradymites as natural hyperbolic materials for the near-infrared to visible. ACS Photon. 1, 1285–1289 (2014).

  77. 77.

    , , , & Linearly polarized excitons in single-and few-layer ReS2 crystals. ACS Photon. 3, 96–101 (2015).

  78. 78.

    et al. Excitons in ultrathin organic-inorganic perovskite crystals. Phys. Rev. B 92, 045414 (2015).

  79. 79.

    , , & Theoretical investigation of electron-hole complexes in anisotropic two-dimensional materials. Phys. Rev. B 93, 115314 (2016).

  80. 80.

    , & Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B 88, 045318 (2013).

  81. 81.

    et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

  82. 82.

    et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

  83. 83.

    et al. Probing excitonic dark states in single-layer tungsten disulphide. Nature 513, 214–218 (2014).

  84. 84.

    , & Exciton binding energy of monolayer WS2. Sci. Rep. 5, 9218 (2015).

  85. 85.

    , , & Semiconductor excitons in new light. Nat. Mater. 5, 523–531 (2006).

  86. 86.

    , , & The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).

  87. 87.

    & One-dimensional wide energy bands in a polydiacetylene revealed by electroreflectance. Phys. Rev. Lett. 46, 1156–1159 (1981).

  88. 88.

    et al. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 14, 202–206 (2013).

  89. 89.

    et al. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi (RRL)-Rapid Res. Lett. 9, 457–461 (2015).

  90. 90.

    et al. On valence-band splitting in layered MoS2. ACS Nano 9, 8514–8519 (2015).

  91. 91.

    et al. Extraordinarily bound quasi-one-dimensional trions in two-dimensional phosphorene atomic semiconductors. ACS Nano 10, 2046–2053 (2016).

  92. 92.

    , , , & Anisotropic exciton Stark shift in black phosphorus. Phys. Rev. B 91, 155311 (2015).

  93. 93.

    & Quantum Theory of the Optical and Electronic Properties of Semiconductors Vol. V (World Scientific, 1990).

  94. 94.

    Semiconductor Optics (Springer Science Business Media, 2012).

  95. 95.

    et al. Absorption coefficients and exciton oscillator strengths in AlGaAs-GaAs superlattices. Phys. Rev. B 32, 8027–8034 (1985).

  96. 96.

    et al. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett. 103, 181119 (2013).

  97. 97.

    et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).

  98. 98.

    et al. Nano-optical imaging of WSe2 waveguide modes revealing light-exciton interactions. Phys. Rev. B 94, 081402(R) (2016).

  99. 99.

    & Van der Waals heterostructures. Nature 499, 419–425 (2013).

  100. 100.

    et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

  101. 101.

    , & High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

  102. 102.

    et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

  103. 103.

    et al. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics. Nat. Nanotech. 11, 9–15 (2016).

  104. 104.

    et al. Graphene on hexagonal boron nitride as a tunable hyperbolic metamaterial. Nat. Nanotech. 10, 682–686 (2015).

  105. 105.

    , , , & Band alignment of 2D semiconductors for designing heterostructures with momentum space matching. Phys. Rev. B 94, 035125 (2006).

  106. 106.

    et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013).

  107. 107.

    et al. Mid-infrared plasmonic biosensing with graphene. Science 349, 165–168 (2015).

  108. 108.

    et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat. Commun. 7, 12334 (2016).

  109. 109.

    , , , & Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array. Nanotechnology 26, 134002 (2015).

  110. 110.

    & Transformation optics using graphene. Science 332, 1291–1294 (2011).

  111. 111.

    , , & Nonequilibrium plasmons with gain in graphene. Phys. Rev. B 91, 075404 (2015).

  112. 112.

    et al. Novel highly conductive and transparent graphene-based conductors. Adv. Mater. 24, 2844–2849 (2012).

  113. 113.

    , , & Broadband super-Planckian thermal emission from hyperbolic metamaterials. Appl. Phys. Lett. 101, 131106 (2012).

  114. 114.

    & Photonic analog of a van Hove singularity in metamaterials. Phys. Rev. B 88, 045407 (2013).

  115. 115.

    et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9, 676–681 (2014).

  116. 116.

    & Signatures of Bloch-band geometry on excitons: nonhydrogenic spectra in transition-metal dichalcogenides. Phys. Rev. Lett. 115, 166802 (2015).

  117. 117.

    & Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

  118. 118.

    et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15, 1660–1666 (2015).

  119. 119.

    et al. Manifestation of unexpected semiconducting properties in few-layer orthorhombic arsenene. Appl. Phys. Exp. 8, 055201 (2015).

  120. 120.

    et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

Download references

Acknowledgements

T.L. acknowledges financial support by DARPA grant award FA8650-16-2-7640. A.C. acknowledges support by CNPq, through the PRONEX/FUNCAP and Science Without Borders programs. J.D.C. acknowledges financial support from the Office of Naval Research that was administered by the NRL Nanoscience Institute. A.K. and N.X.F. acknowledge the financial support by AFOSR MURI (Award No. FA9550-12-1-0488). L.M.M. acknowledges the Spanish Ministry of Economy and Competitiveness under project MAT2014-53432-C5-1-R. F.K. acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (SEV-2015-0522), support by Fundacio Cellex Barcelona, the European Union H2020 Programme under grant agreement no 604391 Graphene Flagship’, the ERC starting grant (307806, CarbonLight), and project GRASP (FP7-ICT-2013-613024-GRASP). We also acknowledge useful discussion with A. Chernikov.

Author information

Affiliations

  1. Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA

    • Tony Low
    •  & Anshuman Kumar
  2. Universidade Federal do Ceará, Departamento de Física, Caixa Postal 6030, 60455-760 Fortaleza, Ceará, Brazil

    • Andrey Chaves
  3. Department of Chemistry, Columbia University, New York, New York 10027, USA

    • Andrey Chaves
  4. US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington DC 20375, USA

    • Joshua D. Caldwell
  5. Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

    • Anshuman Kumar
    •  & Nicholas X. Fang
  6. IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598, USA

    • Phaedon Avouris
  7. Department of Applied Physics, Stanford University, Stanford, California 94305, USA

    • Tony F. Heinz
  8. IMDEA Nanociencia, Calle de Faraday 9, E-28049 Madrid, Spain

    • Francisco Guinea
  9. Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK

    • Francisco Guinea
  10. Instituto de Ciencia de Materiales de Aragon and Departamento de Fisica de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50012 Zaragoza, Spain

    • Luis Martin-Moreno
  11. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

    • Frank Koppens
  12. ICREA Institució Catalana de Recerça i Estudis Avancats, 08010 Barcelona, Spain

    • Frank Koppens

Authors

  1. Search for Tony Low in:

  2. Search for Andrey Chaves in:

  3. Search for Joshua D. Caldwell in:

  4. Search for Anshuman Kumar in:

  5. Search for Nicholas X. Fang in:

  6. Search for Phaedon Avouris in:

  7. Search for Tony F. Heinz in:

  8. Search for Francisco Guinea in:

  9. Search for Luis Martin-Moreno in:

  10. Search for Frank Koppens in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Tony Low.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4792