Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality

Abstract

Mineralization of fibrillar collagen with biomimetic process-directing agents has enabled scientists to gain insight into the potential mechanisms involved in intrafibrillar mineralization. Here, by using polycation- and polyanion-directed intrafibrillar mineralization, we challenge the popular paradigm that electrostatic attraction is solely responsible for polyelectrolyte-directed intrafibrillar mineralization. As there is no difference when a polycationic or a polyanionic electrolyte is used to direct collagen mineralization, we argue that additional types of long-range non-electrostatic interaction are responsible for intrafibrillar mineralization. Molecular dynamics simulations of collagen structures in the presence of extrafibrillar polyelectrolytes show that the outward movement of ions and intrafibrillar water through the collagen surface occurs irrespective of the charges of polyelectrolytes, resulting in the experimentally verifiable contraction of the collagen structures. The need to balance electroneutrality and osmotic equilibrium simultaneously to establish Gibbs–Donnan equilibrium in a polyelectrolyte-directed mineralization system establishes a new model for collagen intrafibrillar mineralization that supplements existing collagen mineralization mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryogenic TEM images and cryo-electron tomography of collagen fibrils mineralized by PAH-ACP.
Figure 2: Conventional TEM of mineralization of reconstituted collagen fibrils by PAH-ACP (single-layer collagen mineralization model).
Figure 3: Cationic collagen model of PAH-ACP intrafibrillar mineralization.
Figure 4: The effects of inclusion of a short-chain polyamine (spermine) on collagen mineralization with PAH-ACP.
Figure 5: Molecular dynamics simulations.
Figure 6: Molecular dynamics simulations of the movement of ions, water molecules and mineralization precursors that are simplified as Ca ions across the contracted collagen structures in the presence of polyanionic and polycationic electrolytes, following the introduction of Ca ions into the system.

Similar content being viewed by others

References

  1. Wang, Y. et al. The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat. Mater. 11, 724–733 (2012).

    Article  CAS  Google Scholar 

  2. Olszta, M. J. et al. Bone structure and formation: a new perspective. Mater. Sci. Eng. 58, 77–116 (2007).

    Article  Google Scholar 

  3. Deshpande, A. S. & Beniash, E. Bio-inspired synthesis of mineralized collagen fibrils. Crystallogr. Growth Des. 8, 3084–3090 (2008).

    Article  CAS  Google Scholar 

  4. Nudelman, F. et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater. 9, 1004–1009 (2010).

    Article  CAS  Google Scholar 

  5. Liu, Y. et al. Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials 32, 1291–1300 (2011).

    Article  Google Scholar 

  6. Habraken, W. J. et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat. Commun. 4, 1507 (2013).

    Article  Google Scholar 

  7. Nudelman, F., Lausch, A. J., Sommerdijk, N. A. & Sone, E. D. In vitro models of collagen biomineralization. J. Struct. Biol. 183, 258–269 (2013).

    Article  CAS  Google Scholar 

  8. Wang, Y. et al. Water mediated structuring of bone apatite. Nat. Mater. 12, 1144–1153 (2013).

    Article  CAS  Google Scholar 

  9. Xu, Z. et al. Molecular mechanisms for intrafibrillar collagen mineralization in skeletal tissues. Biomaterials 39, 59–66 (2015).

    Article  CAS  Google Scholar 

  10. Gower, L. B. in Biomineralization and Biomaterials: Fundamentals and Applications 1st edn (eds Aparicio, C. & Ginebra, M. P.) Ch. 6 (Woodhead Publishing, Elsevier, 2016).

    Google Scholar 

  11. Jee, S. S., Thula, T. T. & Gower, L. B. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight. Acta Biomater. 6, 3676–3686 (2010).

    Article  CAS  Google Scholar 

  12. Cölfen, H. Biomineralization: a crystal-clear view. Nat. Mater. 9, 960–961 (2010).

    Article  Google Scholar 

  13. Li, S. T. & Katz, E. P. An electrostatic model for collagen fibrils. The interaction of reconstituted collagen with Ca++, Na+, and Cl. Biopolymers 15, 1439–1460 (1976).

    Article  CAS  Google Scholar 

  14. Silver, F. H. & Landis, W. J. Deposition of apatite in mineralizing vertebrate extracellular matrices: a model of possible nucleation sites on type I collagen. Connect. Tissue Res. 52, 242–254 (2011).

    Article  CAS  Google Scholar 

  15. Xu, A. W., Antonietti, M., Cölfen, H. & Fang, Y. P. Uniform hexagonal plates of vaterite CaCO3 mesocrystals formed by biomimetic mineralization. Adv. Funct. Mater. 16, 903–908 (2006).

    Article  CAS  Google Scholar 

  16. Cantaert, B. et al. Think positive: phase separation enables a positively charged additive to induce dramatic changes in calcium carbonate morphology. Adv. Funct. Mater. 22, 907–915 (2012).

    Article  CAS  Google Scholar 

  17. Philipse, A. & Vrij, A. The Donnan equilibrium: I. On the thermodynamic foundation of the Donnan equation of state. J. Phys. Condens. Matter 23, 194106 (2011).

    Article  CAS  Google Scholar 

  18. Chandran, P. L. & Barocas, V. H. Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse. J. Biomech. Eng. 126, 152–166 (2004).

    Article  Google Scholar 

  19. Dey, A. et al. The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat. Mater. 9, 1010–1014 (2010).

    Article  CAS  Google Scholar 

  20. Gower, L. B. & Odom, D. J. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process. J. Crystallogr. Growth 210, 719–734 (2000).

    Article  CAS  Google Scholar 

  21. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  Google Scholar 

  22. Bewernitz, M. A., Gebauer, D., Long, J., Cölfen, H. & Gower, L. B. A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss. 159, 291–312 (2012).

    Article  CAS  Google Scholar 

  23. Gebauer, D., Kellermeier, M., Gale, J. D., Bergström, L. & Cölfen, H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 43, 2348–2371 (2014).

    Article  CAS  Google Scholar 

  24. Weinstock, A., King, P. C. & Wuthier, R. E. The ion-binding characteristics of reconstituted collagen. Biochem. J. 102, 983–988 (1967).

    Article  CAS  Google Scholar 

  25. Li, S., Golub, E. & Katz, E. P. Electrostatic side chain complementarity in collagen fibrils. J. Mol. Biol. 98, 835–839 (1975).

    Article  CAS  Google Scholar 

  26. Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008).

    Article  CAS  Google Scholar 

  27. Toroian, D., Lim, J. E. & Price, P. A. The size exclusion characteristics of type I collagen: implications for the role of noncollagenous bone constituents in mineralization. J. Biol. Chem. 282, 22437–22447 (2007).

    Article  CAS  Google Scholar 

  28. Price, P. A., Toroian, D. & Lim, J. E. Mineralization by inhibitor exclusion: the calcification of collagen with fetuin. J. Biol. Chem. 284, 17092–17101 (2009).

    Article  CAS  Google Scholar 

  29. Takahashi, M. et al. The importance of size-exclusion characteristics of type I collagen in bonding to dentin matrices. Acta Biomater. 9, 9522–9528 (2013).

    Article  CAS  Google Scholar 

  30. Mueller, E. & Sikes, C. S. Adsorption and modification of calcium salt crystal growth by anionic peptides and spermine. Calcif. Tissue Int. 52, 34–41 (1993).

    Article  CAS  Google Scholar 

  31. Rhee, S.-H. & Tanaka, J. Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid. Biomaterials 20, 2155–2160 (1999).

    Article  CAS  Google Scholar 

  32. Bhalla, G. & Deen, W. M. Effects of charge on osmotic reflection coefficients of macromolecules in porous membranes. J. Colloid Interface Sci. 333, 363–372 (2009).

    Article  CAS  Google Scholar 

  33. Dobrynin, A. V. & Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 30, 1049–1118 (2005).

    Article  CAS  Google Scholar 

  34. O’Shaughnessy, B. & Yang, Q. Manning-Oosawa counterion condensation. Phys. Rev. Lett. 94, 048302 (2005).

    Article  Google Scholar 

  35. Nguyen, M. K. & Kurtz, I. Quantitative interrelationship between Gibbs-Donnan equilibrium, osmolality of body fluid compartments, and plasma water sodium concentration. J. Appl. Physiol. 100, 1293–1300 (2006).

    Article  CAS  Google Scholar 

  36. Alexandrowicz, Z. & Katchalsky, A. Colligative properties of polyelectrolyte solutions in excess of salt. J. Polym. Sci. A 1, 3231–3260 (1963).

    CAS  Google Scholar 

  37. Carrillo, J.-M. Y. & Dobrynin, A. V. Salt effect on osmotic pressure of polyelectrolyte solutions: simulation study. Polymers 6, 1897–1913 (2014).

    Article  Google Scholar 

  38. Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C. & Scharf, M. The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J. Comput. Chem. 16, 273–284 (1995).

    Article  CAS  Google Scholar 

  39. Shen, Z. L., Kahn, H., Ballarini, R. & Eppell, S. J. Viscoelastic properties of isolated collagen fibrils. Biophys. J. 100, 3008–3015 (2011).

    Article  CAS  Google Scholar 

  40. Sopakayang, R., De Vita, R., Kwansa, A. & Freeman, J. W. Elastic and viscoelastic properties of a type I collagen fiber. J. Theor. Biol. 293, 197–205 (2012).

    Article  CAS  Google Scholar 

  41. Masic, A. et al. Osmotic pressure induced tensile forces in tendon collagen. Nat. Commun. 6, 5942 (2015).

    Article  CAS  Google Scholar 

  42. Kwansa, A. L. & Freeman, J. W. Elastic energy storage in an unmineralized collagen type I molecular model with explicit solvation and water infiltration. J. Theor. Biol. 262, 691–697 (2010).

    Article  CAS  Google Scholar 

  43. Sachs, F. & Sivaselvan, M. V. Cell volume control in three dimensions: water movement without solute movement. J. Gen. Physiol. 145, 373–380 (2015).

    Article  CAS  Google Scholar 

  44. Screen, H. R. C., Seto, J., Krauss, S., BoeSecke, P. & Gupta, H. S. Extrafibrillar diffusion and intrafibrillar swelling at the nanoscale are associated with stress relaxation in the soft collagenous matrix tissue of tendons. Soft Matter 7, 11243–11251 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant 2015AA020942 from the National High Technology Research and Development Program of China, grant R01 DE015306-06 from NIDCR, grants 81400555, 81130078, 81671012 and 81530050 from NSFC, program IRT13051 from Changjiang Scholars and Innovative Research Team in University and Young Elite Scientist Sponsorship Program by CAST. We thank L. B. Gower (University of Florida, Florida, USA) for discussion of some of the results.

Author information

Authors and Affiliations

Authors

Contributions

L.-n.N. and K.J. performed the mineralization experiments and analytical part of the study and wrote the manuscript. S.E.J. and S.S.J. contributed to the molecular dynamic simulation. L.T., M.L. and L.W. performed cryo-TEM examination. J.-h.B. and Y.-d.Y. contributed to the atomic force microscopy. J.-h.C., L.B. and D.H.P. provided advice on the experimental design and edited the manuscript. F.R.T. performed ultramicrotomy, TEM examination, supervised the project and wrote the manuscript. All authors discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Seung Soon Jang, Ji-hua Chen or Franklin R. Tay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5924 kb)

Supplementary Information

Supplementary movie 1 (MOV 7719 kb)

Supplementary Information

Supplementary movie 2 (MOV 21526 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Ln., Jee, S., Jiao, K. et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nature Mater 16, 370–378 (2017). https://doi.org/10.1038/nmat4789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing