Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Weyl semimetals, Fermi arcs and chiral anomalies

Physicists have discovered a new topological phase of matter, the Weyl semimetal, whose surface features a non-closed Fermi surface whereas the low-energy quasiparticles in the bulk emerge as Weyl fermions. A brief review of these developments and perspectives on the next steps forward are presented.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Signatures of Adler–Bell–Jackiw chiral anomaly in TaAs.
Figure 2: Observation of Weyl fermions and topological Fermi arcs.
Figure 3: Electronic and optical control of Weyl fermions.

References

  1. Weyl, H. Z. Phys. 56, 330–352 (1929).

    Article  Google Scholar 

  2. Herring, C. Phys. Rev. 52, 365–373 (1937).

    Article  CAS  Google Scholar 

  3. Murakami, S. New J. Phys. 9, 356 (2007).

    Article  Google Scholar 

  4. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  5. Yang, K.-Y., Lu, Y.-M., Ran, Y. Phys. Rev. B 84, 075129 (2011).

    Article  Google Scholar 

  6. Burkov, A. A. & Balents, L. Phys. Rev. Lett. 107, 127205 (2011).

    Article  CAS  Google Scholar 

  7. Xu, G. et al. Phys. Rev. Lett. 107, 186806 (2011).

    Article  Google Scholar 

  8. Volovik, G. E. The Universe in a Helium Droplet (Oxford Univ. Press, 2009).

    Book  Google Scholar 

  9. Ciudad, D. Nat. Mater. 14, 863 (2015).

    Article  CAS  Google Scholar 

  10. Hasan, M. Z., Xu, S.-Y., Belopolski, B. & Huang, S.-M. Annu. Rev. Cond. Mat. Phys. (in the press).

  11. Hasan, M. Z., Xu, S.-Y. & Bian, G. Phys. Scripta 164, 014001 (2015).

    Article  Google Scholar 

  12. Xu, S.-Y. et al. Science 332, 560–564 (2011).

    Article  CAS  Google Scholar 

  13. Singh, B. et al. Phys. Rev. B 86, 115208 (2012).

    Article  Google Scholar 

  14. Huang, S. M., Xu, S.-Y. et al. Nat. Commun. 6, 7373 (2015).

    Article  CAS  Google Scholar 

  15. Xu, S.-Y. et al. Science 349, 613–617 (2015).

    Article  CAS  Google Scholar 

  16. Xu, S.-Y. et al. Science 347, 294–298 (2015).

    Article  CAS  Google Scholar 

  17. Weng, H. et al. Phys. Rev. X 5, 011029 (2015).

    Google Scholar 

  18. Lv, B. Q. et al. Phys. Rev. X 5, 031013 (2015).

    Google Scholar 

  19. Huang, X. et al. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  20. Zhang, C. et al. Nat. Commun. 7, 10735 (2016).

    Article  CAS  Google Scholar 

  21. Xu, S.-Y. et al. Nat. Phys. 11, 748–754 (2015).

    Article  CAS  Google Scholar 

  22. Liu, Z. et al. Nat. Mater. 15, 27–31 (2016).

    Article  CAS  Google Scholar 

  23. Lv, B. Q. et al. Nat. Phys. 11, 724727 (2015).

    Article  Google Scholar 

  24. Belopolski, I. et al. Phys. Rev. Lett. 116, 066802 (2016).

    Article  Google Scholar 

  25. Hasan, M. Z. & Kane, C. L. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  CAS  Google Scholar 

  26. Hasan, M. Z. & Moore, J. E. Annu. Rev. Cond. Mat. Phys. 2, 55 (2011).

    Article  CAS  Google Scholar 

  27. ICSD; https://icsd.fiz-karlsruhe.de/search/basic.xhtml

  28. Chang, G. et al. Sci. Adv. 2, e1600295 (2016).

    Article  Google Scholar 

  29. Huang, S.-M. et al. Proc. Natl Acad. Sci. USA 113, 1180–1185 (2016).

    Article  CAS  Google Scholar 

  30. Soluyanov, A. A. et al. Nature 527, 495–498 (2015).

    Article  CAS  Google Scholar 

  31. Sun, Y. et al. Preprint at http://arxiv.org/abs/1508.03501 (2015).

  32. Chang, T.-R. et al. Nat. Commun. 7, 10639 (2016).

    Article  CAS  Google Scholar 

  33. Wang, Z. et al. Phys. Rev. Lett. 117, 056805 (2016).

    Article  Google Scholar 

  34. Xu, S.-Y. et al. Preprint at https://arxiv.org/abs/1603.07318 (2016).

  35. Belopolski, I. et al. Phys. Rev. B 94, 085127 (2016).

    Article  Google Scholar 

  36. Huang, L. et al. Nat. Mater. http://dx.doi.org/10.1038/nmat4685 (2016).

  37. Xiong, J. et al. Science 350, 413–416 (2015).

    Article  CAS  Google Scholar 

  38. Li, Q. et al. Nat. Phys. 12, 550–554 (2016).

    Article  Google Scholar 

  39. Wu, R. et al. Phys. Rev. X 6, 021017 (2016).

    Google Scholar 

  40. Zhang, Y. et al. Preprint at http://arxiv.org/abs/1602.03576 (2016).

  41. Parameswaran, S. A. et al. Phys. Rev. X 4, 031035 (2014).

    Google Scholar 

  42. Potter, A. C. et al. Nat. Commun. 5, 5161 (2014).

    Article  CAS  Google Scholar 

  43. Chan, C.-K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. Phys. Rev. Lett. 116, 026805 (2016).

    Article  Google Scholar 

  44. Wang, Y.-H. et al. Science 342, 453–457 (2013).

    Article  CAS  Google Scholar 

  45. Chan, C.-K., Lindner, N. H., Refael, G. & Lee, P. A. Preprint at http://arxiv.org/abs/1607.07839 (2016).

  46. Bian, G. et al. Nat. Commun. 7, 10556 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Belopolski, S.-M. Huang, G. Bian, N. Alidoust and M. Neupane for comments, and D. Haldane, I. Klebanov and E. Witten for discussion as a part of Princeton Summer School on New Insights Into Quantum Matter as a part of Prospects in Theoretical Physics Program at IAS. S.J. is supported by the National Basic Research Program of China (Grant No. 2014CB239302 and No. 2013CB921901). Work at Princeton by S.-Y.X and M.Z.H. is supported by the US Department of Energy under Basic Energy Sciences (Grant No. DOE/BES DE-FG-02-05ER46200 and No. DE-AC02-05CH11231 at Advanced Light Source at LBNL) and Princeton University funds. M.Z.H. acknowledges Visiting Scientist user support from Lawrence Berkeley National Laboratory, PRISM, and partial support from the Moore Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Jia or M. Zahid Hasan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Xu, SY. & Hasan, M. Weyl semimetals, Fermi arcs and chiral anomalies. Nature Mater 15, 1140–1144 (2016). https://doi.org/10.1038/nmat4787

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4787

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing