Physicists have discovered a new topological phase of matter, the Weyl semimetal, whose surface features a non-closed Fermi surface whereas the low-energy quasiparticles in the bulk emerge as Weyl fermions. A brief review of these developments and perspectives on the next steps forward are presented.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Non-volatile chirality switching by all-optical magnetization reversal in ferromagnetic Weyl semimetal Co3Sn2S2
Communications Physics Open Access 20 December 2022
-
Visualizing discrete Fermi surfaces and possible nodal-line to Weyl state evolution in ZrSiTe
npj Quantum Materials Open Access 26 May 2022
-
Robust dual topological insulator phase in NaZnBi
NPG Asia Materials Open Access 22 April 2022
Access options
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.



References
Weyl, H. Z. Phys. 56, 330–352 (1929).
Herring, C. Phys. Rev. 52, 365–373 (1937).
Murakami, S. New J. Phys. 9, 356 (2007).
Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Phys. Rev. B 83, 205101 (2011).
Yang, K.-Y., Lu, Y.-M., Ran, Y. Phys. Rev. B 84, 075129 (2011).
Burkov, A. A. & Balents, L. Phys. Rev. Lett. 107, 127205 (2011).
Xu, G. et al. Phys. Rev. Lett. 107, 186806 (2011).
Volovik, G. E. The Universe in a Helium Droplet (Oxford Univ. Press, 2009).
Ciudad, D. Nat. Mater. 14, 863 (2015).
Hasan, M. Z., Xu, S.-Y., Belopolski, B. & Huang, S.-M. Annu. Rev. Cond. Mat. Phys. (in the press).
Hasan, M. Z., Xu, S.-Y. & Bian, G. Phys. Scripta 164, 014001 (2015).
Xu, S.-Y. et al. Science 332, 560–564 (2011).
Singh, B. et al. Phys. Rev. B 86, 115208 (2012).
Huang, S. M., Xu, S.-Y. et al. Nat. Commun. 6, 7373 (2015).
Xu, S.-Y. et al. Science 349, 613–617 (2015).
Xu, S.-Y. et al. Science 347, 294–298 (2015).
Weng, H. et al. Phys. Rev. X 5, 011029 (2015).
Lv, B. Q. et al. Phys. Rev. X 5, 031013 (2015).
Huang, X. et al. Phys. Rev. X 5, 031023 (2015).
Zhang, C. et al. Nat. Commun. 7, 10735 (2016).
Xu, S.-Y. et al. Nat. Phys. 11, 748–754 (2015).
Liu, Z. et al. Nat. Mater. 15, 27–31 (2016).
Lv, B. Q. et al. Nat. Phys. 11, 724727 (2015).
Belopolski, I. et al. Phys. Rev. Lett. 116, 066802 (2016).
Hasan, M. Z. & Kane, C. L. Rev. Mod. Phys. 82, 3045–3067 (2010).
Hasan, M. Z. & Moore, J. E. Annu. Rev. Cond. Mat. Phys. 2, 55 (2011).
Chang, G. et al. Sci. Adv. 2, e1600295 (2016).
Huang, S.-M. et al. Proc. Natl Acad. Sci. USA 113, 1180–1185 (2016).
Soluyanov, A. A. et al. Nature 527, 495–498 (2015).
Sun, Y. et al. Preprint at http://arxiv.org/abs/1508.03501 (2015).
Chang, T.-R. et al. Nat. Commun. 7, 10639 (2016).
Wang, Z. et al. Phys. Rev. Lett. 117, 056805 (2016).
Xu, S.-Y. et al. Preprint at https://arxiv.org/abs/1603.07318 (2016).
Belopolski, I. et al. Phys. Rev. B 94, 085127 (2016).
Huang, L. et al. Nat. Mater. http://dx.doi.org/10.1038/nmat4685 (2016).
Xiong, J. et al. Science 350, 413–416 (2015).
Li, Q. et al. Nat. Phys. 12, 550–554 (2016).
Wu, R. et al. Phys. Rev. X 6, 021017 (2016).
Zhang, Y. et al. Preprint at http://arxiv.org/abs/1602.03576 (2016).
Parameswaran, S. A. et al. Phys. Rev. X 4, 031035 (2014).
Potter, A. C. et al. Nat. Commun. 5, 5161 (2014).
Chan, C.-K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. Phys. Rev. Lett. 116, 026805 (2016).
Wang, Y.-H. et al. Science 342, 453–457 (2013).
Chan, C.-K., Lindner, N. H., Refael, G. & Lee, P. A. Preprint at http://arxiv.org/abs/1607.07839 (2016).
Bian, G. et al. Nat. Commun. 7, 10556 (2016).
Acknowledgements
We thank I. Belopolski, S.-M. Huang, G. Bian, N. Alidoust and M. Neupane for comments, and D. Haldane, I. Klebanov and E. Witten for discussion as a part of Princeton Summer School on New Insights Into Quantum Matter as a part of Prospects in Theoretical Physics Program at IAS. S.J. is supported by the National Basic Research Program of China (Grant No. 2014CB239302 and No. 2013CB921901). Work at Princeton by S.-Y.X and M.Z.H. is supported by the US Department of Energy under Basic Energy Sciences (Grant No. DOE/BES DE-FG-02-05ER46200 and No. DE-AC02-05CH11231 at Advanced Light Source at LBNL) and Princeton University funds. M.Z.H. acknowledges Visiting Scientist user support from Lawrence Berkeley National Laboratory, PRISM, and partial support from the Moore Foundation.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Jia, S., Xu, SY. & Hasan, M. Weyl semimetals, Fermi arcs and chiral anomalies. Nature Mater 15, 1140–1144 (2016). https://doi.org/10.1038/nmat4787
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4787
This article is cited by
-
Non-volatile chirality switching by all-optical magnetization reversal in ferromagnetic Weyl semimetal Co3Sn2S2
Communications Physics (2022)
-
Visualizing discrete Fermi surfaces and possible nodal-line to Weyl state evolution in ZrSiTe
npj Quantum Materials (2022)
-
Robust dual topological insulator phase in NaZnBi
NPG Asia Materials (2022)
-
The flow of the Berry curvature vector field
Scientific Reports (2022)
-
Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs
Nature Materials (2022)