Weyl semimetals, Fermi arcs and chiral anomalies

Physicists have discovered a new topological phase of matter, the Weyl semimetal, whose surface features a non-closed Fermi surface whereas the low-energy quasiparticles in the bulk emerge as Weyl fermions. A brief review of these developments and perspectives on the next steps forward are presented.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Signatures of Adler–Bell–Jackiw chiral anomaly in TaAs.
Figure 2: Observation of Weyl fermions and topological Fermi arcs.
Figure 3: Electronic and optical control of Weyl fermions.

References

  1. 1

    Weyl, H. Z. Phys. 56, 330–352 (1929).

  2. 2

    Herring, C. Phys. Rev. 52, 365–373 (1937).

  3. 3

    Murakami, S. New J. Phys. 9, 356 (2007).

  4. 4

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Phys. Rev. B 83, 205101 (2011).

  5. 5

    Yang, K.-Y., Lu, Y.-M., Ran, Y. Phys. Rev. B 84, 075129 (2011).

  6. 6

    Burkov, A. A. & Balents, L. Phys. Rev. Lett. 107, 127205 (2011).

  7. 7

    Xu, G. et al. Phys. Rev. Lett. 107, 186806 (2011).

  8. 8

    Volovik, G. E. The Universe in a Helium Droplet (Oxford Univ. Press, 2009).

  9. 9

    Ciudad, D. Nat. Mater. 14, 863 (2015).

  10. 10

    Hasan, M. Z., Xu, S.-Y., Belopolski, B. & Huang, S.-M. Annu. Rev. Cond. Mat. Phys. (in the press).

  11. 11

    Hasan, M. Z., Xu, S.-Y. & Bian, G. Phys. Scripta 164, 014001 (2015).

  12. 12

    Xu, S.-Y. et al. Science 332, 560–564 (2011).

  13. 13

    Singh, B. et al. Phys. Rev. B 86, 115208 (2012).

  14. 14

    Huang, S. M., Xu, S.-Y. et al. Nat. Commun. 6, 7373 (2015).

  15. 15

    Xu, S.-Y. et al. Science 349, 613–617 (2015).

  16. 16

    Xu, S.-Y. et al. Science 347, 294–298 (2015).

  17. 17

    Weng, H. et al. Phys. Rev. X 5, 011029 (2015).

  18. 18

    Lv, B. Q. et al. Phys. Rev. X 5, 031013 (2015).

  19. 19

    Huang, X. et al. Phys. Rev. X 5, 031023 (2015).

  20. 20

    Zhang, C. et al. Nat. Commun. 7, 10735 (2016).

  21. 21

    Xu, S.-Y. et al. Nat. Phys. 11, 748–754 (2015).

  22. 22

    Liu, Z. et al. Nat. Mater. 15, 27–31 (2016).

  23. 23

    Lv, B. Q. et al. Nat. Phys. 11, 724727 (2015).

  24. 24

    Belopolski, I. et al. Phys. Rev. Lett. 116, 066802 (2016).

  25. 25

    Hasan, M. Z. & Kane, C. L. Rev. Mod. Phys. 82, 3045–3067 (2010).

  26. 26

    Hasan, M. Z. & Moore, J. E. Annu. Rev. Cond. Mat. Phys. 2, 55 (2011).

  27. 27

    ICSD; https://icsd.fiz-karlsruhe.de/search/basic.xhtml

  28. 28

    Chang, G. et al. Sci. Adv. 2, e1600295 (2016).

  29. 29

    Huang, S.-M. et al. Proc. Natl Acad. Sci. USA 113, 1180–1185 (2016).

  30. 30

    Soluyanov, A. A. et al. Nature 527, 495–498 (2015).

  31. 31

    Sun, Y. et al. Preprint at http://arxiv.org/abs/1508.03501 (2015).

  32. 32

    Chang, T.-R. et al. Nat. Commun. 7, 10639 (2016).

  33. 33

    Wang, Z. et al. Phys. Rev. Lett. 117, 056805 (2016).

  34. 34

    Xu, S.-Y. et al. Preprint at https://arxiv.org/abs/1603.07318 (2016).

  35. 35

    Belopolski, I. et al. Phys. Rev. B 94, 085127 (2016).

  36. 36

    Huang, L. et al. Nat. Mater. http://dx.doi.org/10.1038/nmat4685 (2016).

  37. 37

    Xiong, J. et al. Science 350, 413–416 (2015).

  38. 38

    Li, Q. et al. Nat. Phys. 12, 550–554 (2016).

  39. 39

    Wu, R. et al. Phys. Rev. X 6, 021017 (2016).

  40. 40

    Zhang, Y. et al. Preprint at http://arxiv.org/abs/1602.03576 (2016).

  41. 41

    Parameswaran, S. A. et al. Phys. Rev. X 4, 031035 (2014).

  42. 42

    Potter, A. C. et al. Nat. Commun. 5, 5161 (2014).

  43. 43

    Chan, C.-K., Lee, P. A., Burch, K. S., Han, J. H. & Ran, Y. Phys. Rev. Lett. 116, 026805 (2016).

  44. 44

    Wang, Y.-H. et al. Science 342, 453–457 (2013).

  45. 45

    Chan, C.-K., Lindner, N. H., Refael, G. & Lee, P. A. Preprint at http://arxiv.org/abs/1607.07839 (2016).

  46. 46

    Bian, G. et al. Nat. Commun. 7, 10556 (2016).

Download references

Acknowledgements

We thank I. Belopolski, S.-M. Huang, G. Bian, N. Alidoust and M. Neupane for comments, and D. Haldane, I. Klebanov and E. Witten for discussion as a part of Princeton Summer School on New Insights Into Quantum Matter as a part of Prospects in Theoretical Physics Program at IAS. S.J. is supported by the National Basic Research Program of China (Grant No. 2014CB239302 and No. 2013CB921901). Work at Princeton by S.-Y.X and M.Z.H. is supported by the US Department of Energy under Basic Energy Sciences (Grant No. DOE/BES DE-FG-02-05ER46200 and No. DE-AC02-05CH11231 at Advanced Light Source at LBNL) and Princeton University funds. M.Z.H. acknowledges Visiting Scientist user support from Lawrence Berkeley National Laboratory, PRISM, and partial support from the Moore Foundation.

Author information

Correspondence to Shuang Jia or M. Zahid Hasan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Xu, S. & Hasan, M. Weyl semimetals, Fermi arcs and chiral anomalies. Nature Mater 15, 1140–1144 (2016) doi:10.1038/nmat4787

Download citation

Further reading