Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery

Abstract

Existing techniques to encapsulate cells into microscale hydrogels generally yield high polymer-to-cell ratios and lack control over the hydrogel’s mechanical properties1. Here, we report a microfluidic-based method for encapsulating single cells in an approximately six-micrometre layer of alginate that increases the proportion of cell-containing microgels by a factor of ten, with encapsulation efficiencies over 90%. We show that in vitro cell viability was maintained over a three-day period, that the microgels are mechanically tractable, and that, for microscale cell assemblages of encapsulated marrow stromal cells cultured in microwells, osteogenic differentiation of encapsulated cells depends on gel stiffness and cell density. We also show that intravenous injection of singly encapsulated marrow stromal cells into mice delays clearance kinetics and sustains donor-derived soluble factors in vivo. The encapsulation of single cells in tunable hydrogels should find use in a variety of tissue engineering and regenerative medicine applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Encapsulation of single cells in thin layers of alginate gel.
Figure 2: Characterization of cell-encapsulating microgels.
Figure 3: Modulating polymer composition and mechanical properties of microgels to impact cell behaviour in vitro.
Figure 4: Culture and differentiation of mMSC-encapsulating microgels in microwells.
Figure 5: Microgel encapsulation prolongs the in vivo residence time of donor cells and systemic levels of secreted soluble factors after i.v. injection.

Similar content being viewed by others

References

  1. Selimovic, S., Oh, J., Bae, H., Dokmeci, M. & Khademhosseini, A. Microscale strategies for generating cell-encapsulating hydrogels. Polymers 4, 1554 (2012).

    Article  CAS  Google Scholar 

  2. Martinez, C. J. et al. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. Macromol. Biosci. 12, 946–951 (2012).

    Article  CAS  Google Scholar 

  3. Tan, W. H. & Takeuchi, S. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 19, 2696–2701 (2007).

    Article  CAS  Google Scholar 

  4. Chung, B. G., Lee, K., Khademhosseini, A. & Lee, S. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12, 45–59 (2012).

    Article  CAS  Google Scholar 

  5. Velasco, D., Tumarkin, E. & Kumacheva, E. Microfluidic encapsulation of cells in polymer microgels. Small 8, 1633–1642 (2012).

    Article  CAS  Google Scholar 

  6. Wu, L., Chen, P., Dong, Y., Feng, X. & Liu, B. F. Encapsulation of single cells on a microfluidic device integrating droplet generation with fluorescence-activated droplet sorting. Biomed. Microdevices 15, 553–560 (2013).

    Article  CAS  Google Scholar 

  7. Edd, J. F. et al. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8, 1262–1264 (2008).

    Article  CAS  Google Scholar 

  8. Kemna, E. W. M. et al. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12, 2881–2997 (2012).

    Article  CAS  Google Scholar 

  9. Veerabadran, N. G., Goli, P. L., Stewart-Clark, S. S., Lvov, Y. M. & Mills, D. K. Nanoencapsulation of stem cells within polyelectrolyte multilayer shells. Macromol. Biosci. 7, 877–882 (2007).

    Article  CAS  Google Scholar 

  10. Wilson, J. T. et al. Cell surface engineering with polyelectrolyte multilayer thin films. J. Am. Chem. Soc. 133, 7054–7064 (2011).

    Article  CAS  Google Scholar 

  11. Tatsumi, K. et al. The non-invasive cell surface modification of hepatocytes with PEG-lipid derivatives. Biomaterials 33, 821–828 (2012).

    Article  CAS  Google Scholar 

  12. Teramura, Y., Oommen, O. P., Olerud, J., Hilborn, J. & Nilsson, B. Microencapsulation of cells, including islets, within stable ultra-thin membranes of maleimide-conjugated PEG-lipid with multifunctional crosslinkers. Biomaterials 34, 2683–2693 (2013).

    Article  CAS  Google Scholar 

  13. Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

    Article  CAS  Google Scholar 

  14. Lee, Y. L. & Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37, 106–126 (2012).

    Article  CAS  Google Scholar 

  15. Köster, S. et al. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8, 1110–1115 (2008).

    Article  Google Scholar 

  16. Holtze, C. et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 8, 1632–1639 (2008).

    Article  CAS  Google Scholar 

  17. Nakano, T., Kodama, H. & Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101 (1994).

    Article  CAS  Google Scholar 

  18. Choi, K. et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 27, 559–567 (2009).

    Article  CAS  Google Scholar 

  19. Fernando, L. P. et al. Mechanism of cellular uptake of highly fluorescent conjugated polymer nanoparticles. Biomacromolecules 11, 2675–2682 (2010).

    Article  CAS  Google Scholar 

  20. De la Vega, J. C., Elischer, P., Schneider, T. & Häfeli, U. O. Uniform polymer microspheres: monodispersity criteria, methods of formation and applications. Nanomedicine 8, 265–285 (2013).

    Article  CAS  Google Scholar 

  21. Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53 (1999).

    Article  CAS  Google Scholar 

  22. Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6365 (2015).

    Article  CAS  Google Scholar 

  23. Desai, R. M. et al. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry. Biomaterials 20, 30–37 (2015).

    Article  Google Scholar 

  24. Steinhilber, D. et al. A microgel construction kit for bioorthogonal encapsulation and pH-controlled release of living cells. Angew. Chem. Int. Ed. 52, 13538–13543 (2013).

    Article  CAS  Google Scholar 

  25. Chaudhuri, O. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).

    Article  CAS  Google Scholar 

  26. Karoubi, G., Ormiston, M. I., Stewart, D. J. & Courtman, D. W. Single-cell hydrogel encapsulation for enhanced survival of human marrow stromal cells. Biomaterials 30, 5445–5455 (2009).

    Article  CAS  Google Scholar 

  27. Orive, G. et al. Cell encapsulation: promise and progress. Nat. Med. 9, 104–107 (2003).

    Article  CAS  Google Scholar 

  28. Ma, M. et al. Core-shell hydrogel microscapsules for improved islets encapsulation. Adv. Healthc. Mater. 2, 667–672 (2013).

    Article  CAS  Google Scholar 

  29. Pareta, R. A., McQuilling, J. P., Farney, A. C. & Opara, E. C. in Regenerative Medicine Applications in Organ Transplantation 1st edn (eds Orlando, G., Lerut, J., Soker, S. & Stratta, R. J.) 627–635 (Academic, 2014).

    Book  Google Scholar 

  30. Fischer, U. M. et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 18, 683–691 (2009).

    Article  CAS  Google Scholar 

  31. Wurdinger, T. A secreted luciferase for ex vivo monitoring of in vivo processes. Nat. Methods 5, 171–173 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (NIH) Grants RO1EB014703 (D.J.M. and D.A.W.) and K99HL125884 (J.-W.S.), and the National Science Foundation (NSF) Graduate Research Fellowship Program (A.S.M.). S.U. was supported by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Contributions

A.S.M., J.-W.S. and D.J.M. conceived and designed the experiments. S.U., H.W. and D.A.W. contributed to microfluidic design and fabrication. A.S.M. and J.-W.S. performed the experiments. A.S.M., J.-W.S. and D.J.M. analysed the data. A.S.M., J.-W.S. and D.J.M. wrote the manuscript. All authors discussed the results and commented on the manuscript. A.S.M. and J.-W.S. contributed equally to this work. The principal investigator is D.J.M.

Corresponding author

Correspondence to David J. Mooney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2659 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, A., Shin, JW., Utech, S. et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nature Mater 16, 236–243 (2017). https://doi.org/10.1038/nmat4781

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4781

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing