Sustainability and in situ monitoring in battery development


The development of improved rechargeable batteries represents a major technological challenge for this new century, as batteries constitute the limiting components in the shift from petrol (gasoline) powered to electric vehicles, while also enabling the use of more renewable energy on the grid. To minimize the ecological implications associated with their wider use, we must integrate sustainability of battery materials into our research endeavours, choosing chemistries that have a minimum footprint in nature and that are more readily recycled or integrated into a full circular economy. Sustainability and cost concerns require that we greatly increase the battery lifetime and consider second lives for batteries. As part of this, we must monitor the state of health of batteries continuously during operation to minimize their degradation. It is thus important to push the frontiers of operando techniques to monitor increasingly complex processes. In this Review, we will describe key advances in both more sustainable chemistries and operando techniques, along with some of the remaining challenges and possible solutions, as we personally perceive them.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Elemental resources.
Figure 2: Schematics of different rechargeable batteries.
Figure 3: Trends towards sustainability for today's batteries.
Figure 4: Examples of operando techniques.
Figure 5: Possible future integration scenario for battery management.


  1. 1

    Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    CAS  Google Scholar 

  2. 2

    US Energy Information Administration. Annual Energy Outlook (2016);

  3. 3

    Pillot, C. Avicenne Energy Analysis (April 2016).

  4. 4

    Ishihara, K., Kihira, N., Terada, N., Iwahori, T. & Nishimura, K. Life cycle analysis of large-size lithium-ion secondary batteries developed in the Japanese national project. In Proceedings from 5th Ecobalance Conference, 293–294 (2002).

    Google Scholar 

  5. 5

    Straubel, J. B. Energy storage, EV's and the grid. EIA Conf., Washington DC, 15 June 2015;

    Google Scholar 

  6. 6

    Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015).

    Google Scholar 

  7. 7

    Viswanathan, V. V. & Kintner-Meyer, M. Second use of transportation batteries: maximizing the value of batteries for transportation and grid services. IEEE Trans. Vehic. Technol. 60, 2963–2970 (2011).

    Google Scholar 

  8. 8

    Jiao, N. Evans, S., Secondary use of electric vehicle batteries and potential impacts on business models. J. Indust. Prod. Eng. 33, 348–354 (2016).

    Google Scholar 

  9. 9

    Zhang, P., Yokoyama, T., Itabashi, O., Suzuki, T. M. & Inoue, K. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47, 259–271 (1998).

    CAS  Google Scholar 

  10. 10

    Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. & Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997).

    CAS  Google Scholar 

  11. 11

    Tarascon, J. M. et al. Hunting for better Li-based electrode materials via low temperature inorganic synthesis. Chem. Mater. 22, 724–739 (2009).

    Google Scholar 

  12. 12

    Ravet, N. et al. Improved iron based cathode material. In Proc. 196th ECS Meeting, Honolulu, October 1999. Extended abstract 127 (1999).

    Google Scholar 

  13. 13

    Yabuuchi, N. & Ohzuku, T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J. Power Sources 119, 171–174 (2003).

    Google Scholar 

  14. 14

    Nytén, A., Abouimrane, A., Armand, M., Gustafsson, T. & Thomas, J. O. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem. Commun. 7, 156–160 (2005).

    Google Scholar 

  15. 15

    Legagneur, V. et al. LiMBO3 (M = Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties. Solid State Ion. 139, 37–46 (2001).

    CAS  Google Scholar 

  16. 16

    Rousse, G. & Tarascon, J. M. Sulfate-based polyanionic compounds for Li-ion batteries: synthesis, crystal chemistry, and electrochemistry aspects. Chem. Mater. 26, 394–406 (2014).

    CAS  Google Scholar 

  17. 17

    Masquelier, C. & Croguennec, L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113, 6552–6591 (2013).

    CAS  Google Scholar 

  18. 18

    Ravnsbæk, D. B. et al. Extended solid solutions and coherent transformations in nanoscale olivine cathodes. Nano Lett. 14, 1484–1491 (2014).

    Google Scholar 

  19. 19

    Dewulf, J. et al. Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings. Resour. Conserv. Recycl. 54, 229–234 (2010).

    Google Scholar 

  20. 20

    Ueda, A. & Ohzuku, T. Solid-state redox reactions of LiNi1/2Co1/2O2 (R3–m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 141, 2010–2014 (1994).

    CAS  Google Scholar 

  21. 21

    Sun, Y.-K. et al. High-energy cathode material for long-life and safe lithium batteries. Nat. Mater. 8, 320–324 (2009).

    CAS  Google Scholar 

  22. 22

    Sun, Y.-K. et al. Nanostructured high-energy cathode materials for advanced lithium batteries. Nat. Mater. 11, 942–947 (2012).

    CAS  Google Scholar 

  23. 23

    Thackeray, M. M., Johnson, C. S., Vaughey, J. T., Li, N. & Hackney, S. A. Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257–2267 (2005).

    CAS  Google Scholar 

  24. 24

    Lu, Z., Beaulieu, L. Y., Donaberger, R. A., Thomas, C. L. & Dahn, J. R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2 . J. Electrochem. Soc. 149, A778–A791 (2002).

    CAS  Google Scholar 

  25. 25

    Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    CAS  Google Scholar 

  26. 26

    McCalla, E. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    CAS  Google Scholar 

  27. 27

    Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684 (2016).

    CAS  Google Scholar 

  28. 28

    Freire, M. et al. A new active Li–Mn–O compound for high energy density Li-ion batteries. Nat. Mater. 15, 173–177 (2016).

    CAS  Google Scholar 

  29. 29

    Obrovac, M. N. & Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 114, 11444–11502 (2014).

    CAS  Google Scholar 

  30. 30

    Buqa, H., Holzapfel, M., Krumeich, F., Veit, C. & Novák, P. Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J. Power Sources 161, 617–622 (2006).

    CAS  Google Scholar 

  31. 31

    Hochgatterer, N. S. et al. Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability. Electrochem. Solid-State Lett. 11, A76–A80 (2008).

    CAS  Google Scholar 

  32. 32

    Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).

    CAS  Google Scholar 

  33. 33

    Chen, H. et al. From biomass to a renewable LixC6O6 organic electrode for sustainable Li-ion batteries. ChemSusChem 1, 348–355 (2008).

    CAS  Google Scholar 

  34. 34

    Poizot, P. & Dolhem, F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4, 2003–2019 (2011).

    CAS  Google Scholar 

  35. 35

    Yabuuchi, N., Kubota, K., Dahbi, M. & Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014).

    CAS  Google Scholar 

  36. 36

    Kundu, D., Talaie, E., Duffort, V. & Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem. Int. Ed., 54, 3431–3448 (2015).

    CAS  Google Scholar 

  37. 37

    Yabuuchi, N. et al. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012).

    CAS  Google Scholar 

  38. 38

    Bianchini, M. et al. Na3V2(PO4)2F3 revisited: a high resolution diffraction study. Chem Mater. 29, 4238–4247 (2014).

    Google Scholar 

  39. 39

    Dugas, R., Zhang, B., Rozier, P. & Tarascon, J. M. Optimization of Na-ion battery systems based on polyanionic or layered positive electrodes and carbon anodes. J. Electrochem. Soc. 163, A867–A874 (2016).

    CAS  Google Scholar 

  40. 40

    Ponrouch, A. et al. Towards high energy density sodium ion batteries through electrolyte optimization. Energy Environ. Sci. 6, 2361–2369 (2013).

    CAS  Google Scholar 

  41. 41

    Le Conseil d'Administration d'Eco-Emballages nomme Philippe-Loïc Jacob au poste de Président-Directeur Général de la société. Eco-Emballages (26 November 2015);

  42. 42

    Barker, J. et al. Low Cost Na-ion Battery Technology (Faradion, 2014);

    Google Scholar 

  43. 43

    Mohtadi, R. & Mizuno, F. Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 5, 1291–1311 (2014).

    Google Scholar 

  44. 44

    Muldoon, J., Bucur, C. B. & Gregory, T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114, 11683–11720 (2014).

    CAS  Google Scholar 

  45. 45

    Sun, X. et al. A high capacity thiospinel cathode for Mg batteries. Energy Environ. Sci. 9, 2273–2277 (2016).

    CAS  Google Scholar 

  46. 46

    Sun, X., Duffort, V., Mehdi, B. L., Browning, N. D. & Nazar, L. F. Investigation of the mechanism of Mg insertion in birnessite in non-aqueous and aqueous rechargeable Mg-ion batteries. Chem. Mater. 28, 534–542 (2016).

    CAS  Google Scholar 

  47. 47

    Yagi, S. et al. A concept of dual-salt polyvalent-metal storage battery. J. Mater. Chem. A 2, 1144–1149 (2014).

    CAS  Google Scholar 

  48. 48

    Murgia, F., Stievano, L., Monconduit, L. & Berthelot, R. Insight into the electrochemical behavior of micrometric Bi and Mg3Bi2 as high performance negative electrodes for Mg batteries. J. Mater. Chem. A, 3, 16478–16485 (2015).

    CAS  Google Scholar 

  49. 49

    Tutusaus, O. & Mohtadi, R. Paving the way towards highly stable and practical electrolytes for rechargeable magnesium batteries. ChemElectroChem 2, 51–57 (2015).

    CAS  Google Scholar 

  50. 50

    Tutusaus, O. et al. An efficient halogen-free electrolyte for use in rechargeable magnesium batteries. Angew. Chem. Int. Ed., 54, 7900–7904 (2015).

    CAS  Google Scholar 

  51. 51

    Aurbach, D. et al. Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000).

    CAS  Google Scholar 

  52. 52

    Ponrouch, A., Frontera, C., Bardé, F. & Palacín, M. R. Towards a calcium-based rechargeable battery. Nat. Mater. 15, 169–172 (2016).

    CAS  Google Scholar 

  53. 53

    Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Google Scholar 

  54. 54

    Ogasawara, T., Débart, A., Holzapfel, M., Novák, P. & Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006).

    CAS  Google Scholar 

  55. 55

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. High energy storage Li–O2 and Li–S batteries. Nat. Mater. 11, 19–29 (2011).

    Google Scholar 

  56. 56

    Adams, B.D. et al., Current density dependence of peroxide formation in the Li–O2 battery and its effect on charge. Energy Environ. Sci. 6, 1772 (2013).

    CAS  Google Scholar 

  57. 57

    Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nat. Chem. 6, 1091–1099 (2014).

    CAS  Google Scholar 

  58. 58

    Aetukuri, N. B. et al. Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat. Chem. 7, 50–56 (2015).

    CAS  Google Scholar 

  59. 59

    Chen, Y., Freunberger, S. A, Peng, Z., Fontaine, O. & Bruce, P. G. Charging a Li-O2 battery using a redox mediator. Nat. Chem. 5, 489–494 (2013).

    Google Scholar 

  60. 60

    Bergner, B. J., Schu, A., Peppler, K., Garsuch, A. & Janek, J. TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014).

    CAS  Google Scholar 

  61. 61

    Lim, H.-D. et al. Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew. Chem. Int. Ed. 53, 3926–3931 (2014).

    CAS  Google Scholar 

  62. 62

    Zhangquan, P., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li-O2 battery, Science 337, 563–566 (2012).

    Google Scholar 

  63. 63

    Thotiyl, M. M. et al. A stable cathode for the aprotic Li–O2 battery. Nat. Mater. 12, 1050–1056 (2013).

    Google Scholar 

  64. 64

    Walker, W. et al. A rechargeable Li−O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013).

    CAS  Google Scholar 

  65. 65

    Giordani, V. et al. A molten salt lithium–oxygen battery. J. Am. Chem. Soc. 138, 2658–2663 (2016).

    Google Scholar 

  66. 66

    Liu, T. et al. Cycling Li–O2 batteries via LiOH formation and decomposition. Science 350, 530–533 (2015).

    CAS  Google Scholar 

  67. 67

    Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).

    CAS  Google Scholar 

  68. 68

    Lim, H.-K. et al. Toward a lithium−“air” battery: the effect of CO2 on the chemistry of a lithium−oxygen cell. J. Am. Chem. Soc. 135, 9733–9742 (2013).

    CAS  Google Scholar 

  69. 69

    Hartmann P. et al. A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228–232 (2013).

    CAS  Google Scholar 

  70. 70

    McCloskey, B. D., Garcia, J. M. & Luntz, A. C. Chemical and electrochemical differences in nonaqueous Li−O2 and Na−O2 batteries. J. Phys. Chem. Lett. 5, 1230–1235 (2014).

    CAS  Google Scholar 

  71. 71

    Fang, X. & Peng, H. A revolution in electrodes: recent progress in rechargeable lithium–sulfur batteries. Small 11, 1488–1511 (2015).

    CAS  Google Scholar 

  72. 72

    Borchardt, L., Oschatz, M. & Kaskel, S. Carbon materials for lithium sulfur batteries — critical questions, Chem. Eur. J. 22, 1–29 (2016).

    Google Scholar 

  73. 73

    Ji, X., Evers, S., Black, R. & Nazar, L. F. Stabilizing lithium–sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2, 325 (2011).

    Google Scholar 

  74. 74

    Demir-Cakan, R. et al. Cathode composites for Li–S batteries via the use of oxygenated porous architectures. J. Am. Chem. Soc. 133, 16154–16160 (2011).

    CAS  Google Scholar 

  75. 75

    Pang, Q., Kundu, D., Cuisinier, M. & Nazar, L. F. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium–sulphur batteries. Nat. Commun. 5, 4759 (2014).

    CAS  Google Scholar 

  76. 76

    Fan, Q., Liu, W., Weng, Z., Sun, Y. & Wang, H. Ternary hybrid material for high-performance lithium–sulfur battery. J. Am. Chem. Soc. 137, 12946–12953 (2015).

    CAS  Google Scholar 

  77. 77

    Li, W., Dahn, J. R. & Wainwright D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115–1118 (1994).

    CAS  Google Scholar 

  78. 78

    Wu, W., Mohamed, A. & Whitacre, J. F. Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode. J. Electrochem. Soc. 160, A497–A504 (2013).

    CAS  Google Scholar 

  79. 79

    Visco, S. J., Katz, B. D., Nimon, Y. S. & De Jonghe, L. C. Li/air non-aqueous batteries. US patent 20070117007 (2007).

  80. 80

    Visco, S. J. et al. Aqueous electrolyte lithium sulfur batteries. US patent 20130122334 (2013).

  81. 81

    Toussaint, G., Stevens, P., Akrour, L., Rouget R. & Fourgeot, F. Development of a rechargeable zinc–air battery. ECS Trans. 28, 25–34 (2010).

    CAS  Google Scholar 

  82. 82

    Pan, H. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).

    CAS  Google Scholar 

  83. 83

    Ponce de Leόn, C., Frías-Ferrerb, A., González-Garcíab, J., Szántoc, D. A. & Walsh, F. C. Redox flow cells for energy conversion. J. Power Sources 160, 716–732 (2006).

    Google Scholar 

  84. 84

    Darling, R. M., Gallagher, K. G., Kowalski, J. A., Ha, S. & Brushett, F. R. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ. Sci. 7, 3459–3477 (2014).

    CAS  Google Scholar 

  85. 85

    Chiang, Y. M., Cater, W. C., Ho, B. H. & Duduta, M. High energy density redox flow device. US patent 20100047671 A1 (2010).

  86. 86

    Lu, Y., Goodenough, J. B. & Kim, Y. Aqueous cathode for next-generation alkali-ion batteries. J. Am. Chem. Soc. 133, 5756–5759 (2011).

    CAS  Google Scholar 

  87. 87

    Brushett, F. R., Vaughey, J. T. & Jansen, A. N. An all-organic non-aqueous lithium-ion redox flow battery. Adv. Energ. Mater. 2, 1390–1396 (2012).

    CAS  Google Scholar 

  88. 88

    Suo, L. et al. 'Water-in-salt' electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    CAS  Google Scholar 

  89. 89

    Yu, Y. et al. Dependence on crystal size of the nanoscale chemical phase distribution and fracture in LixFePO4 . Nano Lett. 15, 4282–4288 (2015).

    CAS  Google Scholar 

  90. 90

    Liu, H. et al. Capturing metastable structures during high rate cycling of LiFePO4 nanoparticle electrodes. Science 344, 1–7 (2014).

    Google Scholar 

  91. 91

    Strobridge, F. C. et al. Mapping the inhomogeneous electrochemical reaction through porous LiFePO4-electrodes in a standard coin cell battery. Chem. Mater. 27, 2374–2386 (2015).

    CAS  Google Scholar 

  92. 92

    Senyshyn, A., Mühlbauer, M. J., Nikolowski, K., Pirling, T. & Ehrenberg H. 'In-operando' neutron scattering studies on Li-ion batteries. J. Power Sources 203, 126–129 (2012).

    CAS  Google Scholar 

  93. 93

    Ogata, K. et al. Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy. Nat. Commun. 5, 3217 (2014).

    CAS  Google Scholar 

  94. 94

    Sathiya, M. et al. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat. Commun. 6, 6276 (2015).

    CAS  Google Scholar 

  95. 95

    Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012).

    CAS  Google Scholar 

  96. 96

    Wang, F. et al. Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 3, 1201 (2012).

    Google Scholar 

  97. 97

    Zhang, X. et al. Rate-induced solubility and suppression of the first-order transition in olivine LiFePO4 . Nano Lett. 14, 2279–2285 (2014).

    CAS  Google Scholar 

  98. 98

    Key, B. et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries, J. Am. Chem. Soc. 131, 9239–9249, (2009).

    CAS  Google Scholar 

  99. 99

    Blanc, F., Leskes, M. & C. P. Grey, C. P. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Acc. Chem. Res. 46, 1952–1963, (2013).

    CAS  Google Scholar 

  100. 100

    Chang, H. J. et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using Li-7 MRI. J. Am. Chem. Soc. 137, 15209–15216 (2015).

    CAS  Google Scholar 

  101. 101

    Huang, J. Y. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515–1520 (2010).

    CAS  Google Scholar 

  102. 102

    Chao, S.-C. et al. A study on the interior microstructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy. Electrochem. Commun. 12, 234–237 (2010).

    CAS  Google Scholar 

  103. 103

    Ulvestad, A. et al. Topological defect dynamics in operando battery nanoparticles, Science 348, 6241 (2015).

    Google Scholar 

  104. 104

    Zhou, L., Leskes, M., Liu, T. & Grey, C. P. Probing dynamic processes in lithium-ion batteries by in situ NMR spectroscopy: application to Li1.08Mn1.92O4 electrodes. Angew. Chem. Int. Ed. Engl. 54, 14782–15786 (2015).

    CAS  Google Scholar 

  105. 105

    Balke, N. et al. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat. Nanotechnol. 5 749–54 (2010).

    CAS  Google Scholar 

  106. 106

    Day, R. P. et al. Differential thermal analysis of Li-ion cells as an effective probe of liquid electrolyte evolution during aging. J. Electrochem. Soc. 162, A2577–A2581 (2015).

    CAS  Google Scholar 

  107. 107

    Rossini, A. J. et al. Dynamic nuclear polarization surface enhanced NMR spectroscopy. Acc. Chem. Res. 46, 1942–1951 (2013).

    CAS  Google Scholar 

  108. 108

    McBreen, J. The application of synchrotron techniques to the study of lithium-ion batteries. J. Solid State Electrochem. 13, 1051–1061 (2009).

    CAS  Google Scholar 

  109. 109

    Verma, P., Maire, P. & Novak, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochem. Acta 55, 6332–6341 (2010).

    CAS  Google Scholar 

  110. 110

    Cabo-Fernandez, L., Mueller, F., Passerini, S. & Hardwick, L. J. In situ Raman spectroscopy of carbon-coated ZnFe2O4 anode material in Li-ion batteries — investigation of SEI growth. Chem. Commun. 52, 3970 (2016).

    CAS  Google Scholar 

  111. 111

    Sommer, L. W. et al. Monitoring of intercalation stages in lithium-ion cells over charge-discharge cycles with fiber optic sensors. J. Electrochem. Soc. 162, A2664–A2669 (2015).

    CAS  Google Scholar 

  112. 112

    LeVine, S. You could be driving an electric car a lot sooner than you think. Quartz (21 October 2015);

    Google Scholar 

Download references


J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014-2020)/ERC Grant-Project670116-ARPEMA. He thanks L. Zhang and D.A. Dalla Corte for help with drawing some of the figures and members of the RS2E for discussions. C.P.G. thanks the SUPERGEN Energy Storage Hub (EP/L019469/1) and the Northeastern Center for Chemical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001294 for support.

Author information



Corresponding author

Correspondence to J. M. Tarascon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grey, C., Tarascon, J. Sustainability and in situ monitoring in battery development. Nature Mater 16, 45–56 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing