Photovoltaic concepts inspired by coherence effects in photosynthetic systems

Abstract

The past decade has seen rapid advances in our understanding of how coherent and vibronic phenomena in biological photosynthetic systems aid in the efficient transport of energy from light-harvesting antennas to photosynthetic reaction centres. Such coherence effects suggest strategies to increase transport lengths even in the presence of structural disorder. Here we explore how these principles could be exploited in making improved solar cells. We investigate in depth the case of organic materials, systems in which energy and charge transport stand to be improved by overcoming challenges that arise from the effects of static and dynamic disorder — structural and energetic — and from inherently strong electron–vibration couplings. We discuss how solar-cell device architectures can evolve to use coherence-exploiting materials, and we speculate as to the prospects for a coherent energy conversion system. We conclude with a survey of the impacts of coherence and bioinspiration on diverse solar-energy harvesting solutions, including artificial photosynthetic systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Coherence as discussed in this work.
Figure 2: Photosynthetic light harvesting compared with OPV.
Figure 3: Coherence in light harvesting.
Figure 4: Random walks and energy migration.
Figure 5: Coherence in charge separation.
Figure 6: Coherent charge separation across an interface.
Figure 7: Coherent vibrational wavepackets.

References

  1. 1

    Zhu, X., Long, S. & Ort, D. R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 61, 235–261 (2010).

    CAS  Google Scholar 

  2. 2

    Tank, M. & Bryant, D. Nutrient requirements and growth physiology of the photoheterotrophic acidobacterium, Chloracidobacterium thermophilum. Front. Microbiol. 6, 226 (2015).

    Google Scholar 

  3. 3

    Dubinsky, Z. & Schofield, O. From the light to the darkness: thriving on the light extremes in the oceans. Hydrobiologia 639, 153–171 (2010).

    CAS  Google Scholar 

  4. 4

    Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nature Chem. 3, 763–774 (2011).

    CAS  Google Scholar 

  5. 5

    Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    CAS  Google Scholar 

  6. 6

    Chenu, A. & Scholes, G. D. Coherence in energy transfer and photosynthesis. Annu. Rev. Phys. Chem. 66, 69–96 (2015).

    CAS  Google Scholar 

  7. 7

    Caruso, F., Chin, A. W., Datta, A., Huelga, S. F. & Plenio, M. B. Entanglement and entangling power of the dynamics in light-harvesting complexes. J. Chem. Phys. 131, 105106 (2009).

    Google Scholar 

  8. 8

    O'Reilly, E. J. & Olaya-Castro, A. Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature. Nat. Commun. 5, 3012 (2014).

    Google Scholar 

  9. 9

    Walschaers, M., Schlawin, F., Wellens, T. & Buchleitner, A. Quantum transport on disordered and noisy networks: an interplay of structural complexity and uncertainty. Annu. Rev. Condens. Matter Phys. 7, 223 (2016).

    Google Scholar 

  10. 10

    Ke, Y., Liu, Y. & Zhao, Y. Visualization of hot exciton energy relaxation from coherent to diffusive regimes in conjugated polymers: a theoretical analysis. J. Phys. Chem. Lett. 6, 1741–1747 (2015).

    CAS  Google Scholar 

  11. 11

    Markvart, T. Light harvesting for quantum solar energy conversion. Progr. Quantum Electr. 24, 107–186 (2000).

    CAS  Google Scholar 

  12. 12

    Mülken, O. & Blumen, A. Continuous-time quantum walks: models for coherent transport on complex networks. Phys. Rep. 502, 37–87 (2011).

    Google Scholar 

  13. 13

    Park, H. et al. Enhanced energy transport in genetically engineered excitonic networks. Nat. Mater. 15, 211–216 (2016).

    CAS  Google Scholar 

  14. 14

    Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Blackwell, 2002).

    Google Scholar 

  15. 15

    Demmig-Adams, B., Garab, G., Adams, W. W. III & Govindjee in Advances in Photosynthesis and Respiration (ed. Govindjee) (Elsevier, 2014).

    Google Scholar 

  16. 16

    Bennett, D., Amarnath, K. & Fleming, G. R. A structure-based model of energy transfer reveals the principles of light harvesting in photosystem II supercomplexes. J. Am. Chem. Soc. 135 (2013).

  17. 17

    Savoie, B. et al. Unequal partnership: asymmetric roles of polymeric donor and fullerene acceptor in generating free charge. J. Am. Chem. Soc. 136, 2876–2884 (2014).

    CAS  Google Scholar 

  18. 18

    Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    CAS  Google Scholar 

  19. 19

    Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–648 (2010).

    CAS  Google Scholar 

  20. 20

    Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Fassioli, F., Dinshaw, R., Arpin, P. C. & Scholes, G. D. Photosynthetic light harvesting: excitons and coherence. J. R. Soc. Interface 11, 2013.0901 (2014).

    Google Scholar 

  22. 22

    Turner, D. B. et al. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys. Chem. Chem. Phys. 14, 4857–4874 (2012).

    CAS  Google Scholar 

  23. 23

    Arpin, P. et al. Spectroscopic studies of cryptophyte light harvesting proteins: vibrations and coherent oscillations. J. Phys. Chem. B 119, 10025–10034 (2015).

    CAS  Google Scholar 

  24. 24

    Ishizaki, A., Calhoun, T. R., Schlau-Cohen, G. S. & Fleming, G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer Phys. Chem. Chem. Phys. 12, 7319–7337 (2010).

    CAS  Google Scholar 

  25. 25

    Ishizaki, A. & Fleming, G. R. Quantum coherence in photosynthetic light harvesting. Annu. Rev. Condens. Matter Phys. 3, 333–361 (2012).

    CAS  Google Scholar 

  26. 26

    Fleming, G. R., Schlau-Cohen, G. S., Amarnath, K. & Zaks, J. Design principles of photosynthetic light-harvesting. Faraday Discuss. 155, 27–41 (2012).

    CAS  Google Scholar 

  27. 27

    Frigaard, N. U., Chew, A. G. M., Li, H., Maresca, J. A. & Bryant, D. A. Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth. Res. 78, 93–117 (2003).

    CAS  Google Scholar 

  28. 28

    Huh, J. et al. Atomistic study of energy funneling in the light-harvesting complex of green sulfur bacteria. J. Am. Chem. Soc. 136, 2048–2057 (2014).

    CAS  Google Scholar 

  29. 29

    Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).

    CAS  Google Scholar 

  30. 30

    Shuler, K., Silver, H. & Lindenberg, K. Simple calculation for the average number of steps to trapping in lattice random walks. J. Stat. Phys. 15, 393–397 (1976).

    Google Scholar 

  31. 31

    Lin, J. et al. Systematic study of exciton diffusion length in organic semiconductors by six experimental methods. Mater. Horiz. 1, 280–285 (2014).

    CAS  Google Scholar 

  32. 32

    Menke, S. & Holmes, R. Exciton diffusion in organic photovoltaic cells. Energy. Environ. Sci. 7, 499–512 (2014).

    CAS  Google Scholar 

  33. 33

    Lunt, R., Benziger, J. & Forrest, S. Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv. Mater. 22, 1233–1236 (2010).

    CAS  Google Scholar 

  34. 34

    Scheblykin, I., Sliusarenko, O. Y., Lepnev, L., Vitukhnovsky, A. & Van der Auweraer, M. Excitons in molecular aggregates of 3,3′-bis-[3-sulfopropyl]-5,5′-dichloro-9-ethylthiacarbocyanine (THIATS): temperature dependent properties. J. Phys. Chem. B, 4636–4646 (2001).

  35. 35

    Völker, S. et al. Singlet–singlet exciton annihilation in an exciton-coupled squaraine–squaraine copolymer: a model toward hetero-J-aggregates. J. Phys. Chem. C 118, 17467–17482 (2014).

    Google Scholar 

  36. 36

    Haedler, A. et al. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 523, 196–198 (2015).

    CAS  Google Scholar 

  37. 37

    Najafov, H., Lee, B., Zhou, Q., Feldman, L. & Podzorov, V. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat. Mater. 9, 938–943 (2010).

    CAS  Google Scholar 

  38. 38

    Bay, Z. & Pearlstein, R. M. Delocalized versus localized pictures in resonance energy transfer. Proc. Natl Acad. Sci. USA 50, 962–967 (1963).

    CAS  Google Scholar 

  39. 39

    Pearlstein, R. M. Photosynthetic exciton theory in the 1960s. Photosynth. Res. 73, 119–126 (2002).

    CAS  Google Scholar 

  40. 40

    Codling, E., Plank, M. & Benhamou, S. Random walk models in biology. J. R. Soc. Interface 5, 813–834 (2008).

    Google Scholar 

  41. 41

    Mirkovic, T. et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. http://doi.org/btcc (2016).

  42. 42

    Beljonne, D. et al. Interchain vs. intrachain energy transfer in a acceptor-capped conjugated polymers. Proc. Natl Acad. Sci. USA 99, 10982–10987 (2002).

    CAS  Google Scholar 

  43. 43

    Potma, E. & Wiersma, D. Exciton superradiance in aggregates: the effect of disorder, higher order exciton–phonon coupling and dimensionality. J. Chem. Phys. 108, 4894–4903 (1998).

    CAS  Google Scholar 

  44. 44

    Eisele, D. et al. Robust excitons inhabit soft supramolecular nanotubes. Proc. Natl Acad. Sci. USA 111, E3367–E3375 (2014).

    CAS  Google Scholar 

  45. 45

    Fagan, J. et al. Length-dependent optical effects in single-wall carbon nanotubes. J. Am. Chem. Soc. 129, 10607–10612 (2007).

    CAS  Google Scholar 

  46. 46

    Lecuiller, R. et al. Fluorescence yield and lifetime of isolated polydiacetylene chains: Evidence for a one-dimensional exciton band in a conjugated polymer. Phys. Rev. B 66, 125205 (2002).

    Google Scholar 

  47. 47

    Cnops, K. et al. 8.4% efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer. Nat. Commun. 5, 3406 (2014).

    Google Scholar 

  48. 48

    Marder, S. R. et al. A unified description of the linear and nonlinear polarization in organic polymethine dyes. Science 265, 632–635 (1994).

    CAS  Google Scholar 

  49. 49

    Saeki, A., Koizumi, Y., Aida, T. & Seki, S. Comprehensive approach to intrinsic charge carrier mobility in conjugtaed organic molecules, macromolecules, and supramolecular architectures. Acc. Chem. Res. 45, 1193–1202 (2012).

    CAS  Google Scholar 

  50. 50

    Grozema, F. & Siebbeles, L. Mechanism of charge trasnport in self-organizing organic materials. Int. Rev. Phys. Chem. 27, 87–138 (2008).

    CAS  Google Scholar 

  51. 51

    Pasveer, W. et al. Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys. Rev. Lett. 94, 206601.

  52. 52

    Blom, P., Mihailetchi, V., Koster, L. & Markov, D. Device physics of polymer: fullerene bulk heterojunction solar cells. Adv. Mater. 19, 1551–1566 (2007).

    CAS  Google Scholar 

  53. 53

    Fratini, S. & Ciuchi, S. Bandlike motion and mobility saturation in organic molecular semiconductors. Phys. Rev. Lett. 103, 266601 (2009).

    CAS  Google Scholar 

  54. 54

    Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    CAS  Google Scholar 

  55. 55

    Prins, P. et al. High intrachain mobility on molecular wires of ladder-type poly(p-phenylenes). Phys. Rev. Lett. 96, 146601 (2006).

    CAS  Google Scholar 

  56. 56

    Nicolai, H. et al. Unification of trap-limited electron transport in semiconducting polymers. Nat. Mater. 11, 882–887 (2012).

    CAS  Google Scholar 

  57. 57

    Olthof, S. et al. Ultralow doping in organic semiconductors: evidence of trap filling. Phys. Rev. Lett. 109, 176601 (2012).

    Google Scholar 

  58. 58

    Mei, J., Diao, Y., Appleton, A., Fang, L. & Bao, Z. Integrated materials design of organic semiconductors for field-effect transistors. J. Am. Chem. Soc. 135, 6724–6746 (2013).

    CAS  Google Scholar 

  59. 59

    Tsutsui, Y. et al. Unraveling unprecedented charge carrier mobility through structure property relationship of four isomers of didodecyl[1]benzothieno[3, 2-b][1]benzothiophene. Adv. Mater. http://doi.org/f3p9dd (2016).

  60. 60

    Choi, S., Kim, B. & Frisbie, C. Electrical resistance of long conjugated molecular wires. Science 320, 1482–1486 (2008).

    CAS  Google Scholar 

  61. 61

    Bixon, M., Jortner, J. & Michel-Beyerle, M. On the mechanism of the primary charge separation in bacterial photosynthesis. Biochim. Biophys. Acta (Bioenergetics) 1056, 301–315 (1991).

    CAS  Google Scholar 

  62. 62

    Creighton, S., Hwang, J., Warshel, A., Parson, W. & Norris, J. Simulating the dynamics of the primary charge separation process in bacterial photosynthesis. Biochemistry 27, 774–781 (1988).

    CAS  Google Scholar 

  63. 63

    Gehlen, J. N., Marchi, M. & Chandler, D. Dynamics affecting the primary charge-transfer in photosynthesis. Science 263, 499–502 (1994).

    CAS  Google Scholar 

  64. 64

    Romero, E. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 677–683 (2014).

    Google Scholar 

  65. 65

    Fuller, F. et al. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6, 706–711 (2014).

    CAS  Google Scholar 

  66. 66

    Huelga, S. F. & Plenio, M. B. Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013).

    CAS  Google Scholar 

  67. 67

    Burke, T., Sweetnam, S., Vandewal, K. & McGehee, M. Beyond Langevin recombination: how equilibrium between free carriers and charge transfer states determines the open-circuit voltage of organic solar cells. Adv. Energy Mater. 5, 1500123 (2015).

    Google Scholar 

  68. 68

    Lakhwani, G., Rao, A. & Friend, R. Bimolecular recombination in organic photovoltaics. Annu. Rev. Phys. Chem. 65, 557–581 (2014).

    CAS  Google Scholar 

  69. 69

    Scholes, G. D. Insights into excitons confined to nanoscale systems: electron–hole interaction, binding energy, and photodissociation. ACS Nano 2, 523–537 (2008).

    CAS  Google Scholar 

  70. 70

    Tummala, N., Zheng, Z., Aziz, S., Coropceanu, V. & Brédas, J. L. Static and dynamic energetic disorder in the C60, PC61BM, C70, and PC71BM fullerenes. J. Phys. Chem. Lett. 6, 3657–3662 (2015).

    CAS  Google Scholar 

  71. 71

    Jackson, N., Savoie, B., Marks, T., Chen, L. & Ratner, M. The next breakthrough for organic photovoltaics? J. Phys. Chem. Lett. 6, 77–84 (2014).

    Google Scholar 

  72. 72

    Gelinas, S. et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512–516 (2014).

    CAS  Google Scholar 

  73. 73

    Bittner, E. & Kelley, A. The role of structural fluctuations and environmental noise in the electron/hole separation kinetics at organic polymer bulk-heterojunction interfaces. Phys. Chem. Chem. Phys. 17, 28853–28859 (2015).

    CAS  Google Scholar 

  74. 74

    Tamura, H., Martinazzo, R., Ruckenbauer, M. & Burghardt, I. Quantum dynamics of ultrafast charge transfer at an oligothiophene-fullerene heterojunction. J. Chem. Phys. 137, 22A540 (1992).

    Google Scholar 

  75. 75

    Falke, S. M. et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014).

    CAS  Google Scholar 

  76. 76

    Barbara, P. F., Walker, G. C. & Smith, T. P. Vibrational-modes and the dynamic solvent effect in electron and proton-transfer. Science 256, 975–981 (1992).

    CAS  Google Scholar 

  77. 77

    Walker, G. C., Åkesson, E., Johnson, A. E., Levinger, N. E. & Barbara, P. F. Interplay of solvent motion and vibrational excitation in electron-transfer kinetics. J. Phys. Chem. 96, 3728–3736 (1992).

    CAS  Google Scholar 

  78. 78

    Dean, J. et al. Broadband transient absorption and two-dimensional electronic spectroscopy of methylene blue. J. Phys. Chem. A 119, 9098–9108 (2015).

    CAS  Google Scholar 

  79. 79

    Song, Y., Clafton, S., Pensack, R., Kee, T. & Scholes, G. D. Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer–fullerene blends. Nat. Commun. 5, 4833 (2014).

    Google Scholar 

  80. 80

    Rafiq, S. & Scholes, G. D. Slow intramolecular vibrational relaxation leads to long-lived excited-state wavepackets. J. Phys. Chem. A 120, 6792–6799 (2016).

    CAS  Google Scholar 

  81. 81

    Collini, E. & Scholes, G. D. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323, 369–373 (2009).

    CAS  Google Scholar 

  82. 82

    Bakulin, A. A. et al. The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335, 1340–1344 (2012).

    CAS  Google Scholar 

  83. 83

    Bakulin, A. A., Silva, C. & Vella, E. Ultrafast spectroscopy with photocurrent detection: watching excitonic optoelectronic systems at work. J. Phys. Chem. Lett. 7, 250–258 (2016).

    CAS  Google Scholar 

  84. 84

    Sweetnam, S. et al. Characterization of the polymer energy landscape in polymer:fullerene bulk heterojunctions and mixed phases. J. Am. Chem. Soc. 136, 14078–14088 (2014).

    CAS  Google Scholar 

  85. 85

    Ryno, S., Fu, Y., Risko, C. & Brédas, J. L. Polarization energies at organic–organic interfaces: impact on the charge separation barrier at donor–acceptor interfaces in organic solar cells. ACS Appl. Mater. Interfaces 8, 15524–15534 (2016).

    CAS  Google Scholar 

  86. 86

    Poelking, C. et al. Impact of mesosacale order on open-circuit voltage in organic solar cells. Nat. Mater. 14, 434–439 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences of the US Department of Energy for funding through Grant DE-SC0015429 for G.D.S. G.D.S. and E.H.S. acknowledge CIFAR, the Canadian Institute for Advanced Research, through its Bio-Inspired Solar Energy programme. J.L.B. acknowledges support by King Abdullah University of Science and Technology (KAUST), the KAUST Competitive Research Grant program, and the Office of Naval Research Global (Award N62909-15-1-2003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregory D. Scholes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brédas, JL., Sargent, E. & Scholes, G. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nature Mater 16, 35–44 (2017). https://doi.org/10.1038/nmat4767

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing