Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct–indirect character of the bandgap in methylammonium lead iodide perovskite

Abstract

Metal halide perovskites such as methylammonium lead iodide (CH3NH3PbI3) are generating great excitement due to their outstanding optoelectronic properties, which lend them to application in high-efficiency solar cells and light-emission devices. However, there is currently debate over what drives the second-order electron–hole recombination in these materials. Here, we propose that the bandgap in CH3NH3PbI3 has a direct–indirect character. Time-resolved photo-conductance measurements show that generation of free mobile charges is maximized for excitation energies just above the indirect bandgap. Furthermore, we find that second-order electron–hole recombination of photo-excited charges is retarded at lower temperature. These observations are consistent with a slow phonon-assisted recombination pathway via the indirect bandgap. Interestingly, in the low-temperature orthorhombic phase, fast quenching of mobile charges occurs independent of the temperature and photon excitation energy. Our work provides a new framework to understand the optoelectronic properties of metal halide perovskites and analyse spectroscopic data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representation of TRPL and TRMC measurements on a thin film of CH3NH3PbI3.
Figure 2: Photo-conductance for a CH3NH3PbI3 thin film.
Figure 3: Product of generation yield φ (≤1) and mobility Σμ as a function of temperature in a CH3NH3PbI3 thin film.
Figure 4: Temperature-dependent PL and TRMC kinetics.
Figure 5: Proposed band diagram and activation energy for second-order recombination in the CH3NH3PbI3 thin film.

Similar content being viewed by others

References

  1. Stranks, S. D. et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013).

    Article  CAS  Google Scholar 

  2. Yi, C., Li, X., Luo, J., Zakeeruddin, S. M. & Grätzel, M. Perovskite photovoltaics with outstanding performance produced by chemical conversion of bilayer mesostructured lead halide/TiO2 films. Adv. Mater. 28, 2964–2970 (2016).

    Article  CAS  Google Scholar 

  3. http://www.nrel.gov accessed on September 1, 2016.

  4. Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3−xClx . Energy Environ. Sci. 7, 2269–2275 (2014).

    Article  CAS  Google Scholar 

  5. Ponseca, C. S. et al. Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. J. Am. Chem. Soc. 136, 5189–5192 (2014).

    Article  CAS  Google Scholar 

  6. Johnston, M. B. & Herz, L. M. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies. Acc. Chem. Res. 49, 146–154 (2016).

    Article  CAS  Google Scholar 

  7. Stranks, S. D. et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014).

    Article  Google Scholar 

  8. D’Innocenzo, V. et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014).

    Article  Google Scholar 

  9. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    Article  CAS  Google Scholar 

  10. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).

    Article  CAS  Google Scholar 

  11. Grundmann, M. The Physics of Semiconductors: An Introduction Including Devices and Nanophysics (Springer, 2006).

    Google Scholar 

  12. Motta, C. et al. Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3 . Nat. Commun. 6, 7026 (2015).

    Article  CAS  Google Scholar 

  13. Zheng, F., Tan, L. Z., Liu, S. & Rappe, A. M. Rashba spin-orbit coupling enhanced carrier lifetime in CH3NH3PbI3 . Nano Lett. 15, 7794–7800 (2015).

    Article  CAS  Google Scholar 

  14. Etienne, T., Mosconi, E. & De Angelis, F. Dynamical origin of the Rashba effect in organohalide lead perovskites: a key to suppressed carrier recombination in perovskite solar cells? J. Phys. Chem. Lett. 7, 1638–1645 (2016).

    Article  CAS  Google Scholar 

  15. Azarhoosh, P., Frost, J. M., McKechnie, S., Walsh, A. & van Schilfgaarde, M. Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells. APL Mater. 4, 091501 (2016).

    Google Scholar 

  16. Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

    Article  CAS  Google Scholar 

  17. Wang, H., Whittaker-Brooks, L. & Fleming, G. R. Exciton and free charge dynamics of methylammonium lead iodide perovskites are different in the tetragonal and orthorhombic phases. J. Phys. Chem. C 119, 19590–19595 (2015).

    Article  CAS  Google Scholar 

  18. Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013).

    Article  CAS  Google Scholar 

  19. Savenije, T. J. et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J. Phys. Chem. Lett. 5, 2189–2194 (2014).

    Article  CAS  Google Scholar 

  20. Zhang, W. et al. Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015).

    Article  CAS  Google Scholar 

  21. Savenije, T. J., Ferguson, A. J., Kopidakis, N. & Rumbles, G. Revealing the dynamics of charge carriers in polymer: fullerene blends using photoinduced time-resolved microwave conductivity. J. Phys. Chem. C 117, 24085–24103 (2013).

    Article  CAS  Google Scholar 

  22. Park, J., Reid, O. G., Blackburn, J. L. & Rumbles, G. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes. Nat. Commun. 6, 8809 (2015).

    Article  Google Scholar 

  23. Kroeze, J. E., Savenije, T. J., Vermeulen, M. J. W. & Warman, J. M. Contactless determination of the photoconductivity action spectrum, exciton diffusion length, and charge separation efficiency in polythiophene-sensitized TiO2 bilayers. J. Phys. Chem. B 107, 7696–7705 (2003).

    Article  CAS  Google Scholar 

  24. Miyata, A. et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nat. Phys. 11, 582–587 (2015).

    Article  CAS  Google Scholar 

  25. Dong, Q. et al. Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347, 967–970 (2015).

    Article  CAS  Google Scholar 

  26. Saba, M. et al. Correlated electron–hole plasma in organometal perovskites. Nat. Commun. 5, 5049 (2014).

    Article  CAS  Google Scholar 

  27. Grozema, F. C. & Siebbeles, L. D. A. Charge mobilities in conjugated polymers measured by pulse radiolysis time-resolved microwave conductivity: from single chains to solids. J. Phys. Chem. Lett. 2, 2951–2958 (2011).

    Article  CAS  Google Scholar 

  28. Gélvez-Rueda, M. C. et al. Effect of cation rotation on charge dynamics in hybrid lead halide perovskites. J. Phys. Chem. C 120, 16577–16585 (2016).

    Article  Google Scholar 

  29. Wehrenfennig, C., Liu, M., Snaith, H. J., Johnston, M. B. & Herz, L. M. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films. APL Mater. 2, 081513 (2014).

    Google Scholar 

  30. Fang, H. H. et al. Photophysics of organic-inorganic hybrid lead iodide perovskite single crystals. Adv. Funct. Mater. 25, 2378–2385 (2015).

    Article  CAS  Google Scholar 

  31. Karakus, M. et al. Phonon-electron scattering limits free charge mobility in methylammonium lead iodide perovskites. J. Phys. Chem. Lett. 6, 4991–4996 (2015).

    Article  CAS  Google Scholar 

  32. Wu, K. et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys. Chem. Chem. Phys. 16, 22476–22481 (2014).

    Article  CAS  Google Scholar 

  33. Hutter, E. M., Eperon, G. E., Stranks, S. D. & Savenije, T. J. Charge carriers in planar and meso-structured organic-inorganic perovskites: mobilities, lifetimes and concentrations of trap states. J. Phys. Chem. Lett. 6, 3082–3090 (2015).

    Article  CAS  Google Scholar 

  34. Bi, Y. et al. Charge carrier lifetimes exceeding 15 microseconds in methylammonium lead iodide single crystals. J. Phys. Chem. Lett. 7, 923–928 (2016).

    Article  CAS  Google Scholar 

  35. ’t Hooft, G. W. & van Opdorp, C. Temperature dependence of interface recombination and radiative recombination in (Al, Ga)As heterostructures. Appl. Phys. Lett. 42, 813–815 (1983).

    Article  Google Scholar 

  36. Ponseca, C. S. et al. Mechanism of charge transfer and recombination dynamics in organo metal halide perovskites and organic electrodes, PCBM and spiro-OMeTAD: role of dark carriers. J. Am. Chem. Soc. 137, 16043–16048 (2015).

    Article  CAS  Google Scholar 

  37. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  CAS  Google Scholar 

  38. Saliba, M. et al. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989 (2016).

    Article  CAS  Google Scholar 

  39. Eperon, G. E. et al. Inorganic caesium lead iodide perovskite solar cells. J. Mater. Chem. A 3, 19688–19695 (2015).

    Article  CAS  Google Scholar 

  40. Saba, M., Quochi, F., Mura, A. & Bongiovanni, G. Excited state properties of hybrid perovskites. Acc. Chem. Res. 49, 166–173 (2016).

    Article  CAS  Google Scholar 

  41. Gfroerer, T. H., Priestley, L. P., Weindruch, F. E. & Wanlass, M. W. Defect-related density of states in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates. J. Appl. Phys. 94, 1738–1743 (2003).

    Article  CAS  Google Scholar 

  42. Ferguson, A. J., Kopidakis, N., Shaheen, S. E. & Rumbles, G. Dark carriers, trapping, and activation control of carrier recombination in neat P3HT and P3HT:PCBM blends. J. Phys. Chem. C 115, 23134–23148 (2011).

    Article  CAS  Google Scholar 

  43. Kong, W. et al. Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3 . Phys. Chem. Chem. Phys. 17, 16405–11 (2015).

    Article  CAS  Google Scholar 

  44. Warman, J. M. et al. Charge mobilities in organic semiconducting materials determined by pulse-radiolysis time-resolved microwave conductivity: π-bond-conjugated polymers versus ππ-stacked discotics. Chem. Mater. 16, 4600–4609 (2004).

    Article  CAS  Google Scholar 

  45. Klein, C. A. Bandgap dependence and related features of radiation ionization energies in semiconductors. J. Appl. Phys. 39, 2029–2038 (1968).

    Article  CAS  Google Scholar 

  46. Alig, R. C. & Bloom, S. Electron-hole-pair creation energies in semiconductors. Phys. Rev. Lett. 35, 1522–1525 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Netherlands Organization for Scientific Research (NWO) under the Echo grant number: 712.014.007. S.D.S. has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement number PIOF-GA-2013-622630. The authors thank A. Houtepen, A. Achtstein and D. deQuilettes for fruitful discussions. W. Evers is acknowledged for technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

E.M.H. performed and analysed the photon-induced TRMC, optical absorption and (TR)PL measurements under the supervision of T.J.S. S.D.S. prepared the samples and performed additional optical absorption measurements. A.O. performed XRD and SEM measurements under the supervision of V.B., and M.C.G.-R. and F.C.G. performed pulse-radiolysis TRMC measurements. E.M.H. and T.J.S. conceived the idea and wrote the manuscript together with S.D.S.

Corresponding authors

Correspondence to Samuel D. Stranks or Tom J. Savenije.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutter, E., Gélvez-Rueda, M., Osherov, A. et al. Direct–indirect character of the bandgap in methylammonium lead iodide perovskite. Nature Mater 16, 115–120 (2017). https://doi.org/10.1038/nmat4765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing