Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution

Abstract

Understanding the interaction between water and oxides is critical for many technological applications, including energy storage, surface wetting/self-cleaning, photocatalysis and sensors. Here, we report observations of strong structural oscillations of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) in the presence of both H2O vapour and electron irradiation using environmental transmission electron microscopy. These oscillations are related to the formation and collapse of gaseous bubbles. Electron energy-loss spectroscopy provides direct evidence of O2 formation in these bubbles due to the incorporation of H2O into BSCF. SrCoO3−δ was found to exhibit small oscillations, while none were observed for La0.5Sr0.5CoO3−δ and LaCoO3. The structural oscillations of BSCF can be attributed to the fact that its oxygen 2p-band centre is close to the Fermi level, which leads to a low energy penalty for oxygen vacancy formation, high ion mobility, and high water uptake. This work provides surprising insights into the interaction between water and oxides under electron-beam irradiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM images and TED patterns of a BSCF particle.
Figure 2: Oscillation frequency and amplitude when exposed to different water vapour pressures and electron dose rates.
Figure 3: EELS of BSCF.
Figure 4: Structural oscillation mechanism and modelling.
Figure 5: Comparison of structural oscillations in BSCF to the lack thereof for other oxides in H2O and under e-beam irradiation.

Similar content being viewed by others

References

  1. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 112–112 (2009).

    Article  CAS  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  Google Scholar 

  3. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  Google Scholar 

  4. Rossmeisl, J., Qu, Z. W., Zhu, H., Kroes, G. J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    Article  CAS  Google Scholar 

  5. Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).

    Article  Google Scholar 

  6. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem. Catal. Chem. 3, 1159–1165 (2011).

    CAS  Google Scholar 

  7. Han, B. et al. Role of LiCoO2 surface terminations in oxygen reduction and evolution kinetics. J. Phys. Chem. Lett. 6, 1357–1362 (2015).

    Article  CAS  Google Scholar 

  8. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  9. Maiyalagan, T., Jarvis, K. A., Therese, S., Ferreira, P. J. & Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014).

    Article  CAS  Google Scholar 

  10. Lee, S. W. et al. The nature of lithium battery materials under oxygen evolution reaction conditions. J. Am. Chem. Soc. 134, 16959–16962 (2012).

    Article  CAS  Google Scholar 

  11. Jung, J.-I. et al. Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis. Energy Environ. Sci. 9, 176–183 (2016).

    Article  CAS  Google Scholar 

  12. Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    Article  CAS  Google Scholar 

  13. Tadanaga, K., Katata, N. & Minami, T. Super-water-repellent Al2O3 coating films with high transparency. J. Am. Ceram. Soc. 80, 1040–1042 (1997).

    Article  CAS  Google Scholar 

  14. Stoerzinger, K. A. et al. Reactivity of perovskites with water: role of hydroxylation in wetting and implications for oxygen electrocatalysis. J. Phys. Chem. C 119, 18504–18512 (2015).

    Article  CAS  Google Scholar 

  15. Kuhlenbeck, H., Shaikhutdinov, S. & Freund, H.-J. Well-ordered transition metal oxide layers in model catalysis—a series of case studies. Chem. Rev. 113, 3986–4034 (2013).

    Article  CAS  Google Scholar 

  16. Azimi, G., Dhiman, R., Kwon, H.-M., Paxson, A. T. & Varanasi, K. K. Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315–320 (2013).

    Article  CAS  Google Scholar 

  17. Paz, Y., Luo, Z., Rabenberg, L. & Heller, A. Photooxidative self-cleaning transparent titanium dioxide films on glass. J. Mater. Res. 10, 2842–2848 (1995).

    Article  CAS  Google Scholar 

  18. Fujishima, A., Zhang, X. & Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008).

    Article  CAS  Google Scholar 

  19. Lee, K. et al. Superwetting of TiO2 by light-induced water-layer growth via delocalized surface electrons. Proc. Natl Acad. Sci. USA 111, 5784–5789 (2014).

    Article  CAS  Google Scholar 

  20. Castelli, I. E. et al. New cubic perovskites for one- and two-photon water splitting using the computational materials repository. Energy Environ. Sci. 5, 9034–9043 (2012).

    Article  CAS  Google Scholar 

  21. Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003).

    Article  CAS  Google Scholar 

  22. Iwahara, H. Proton conducting ceramics and their applications. Solid State Ion. 86–88, 9–15 (1996).

    Article  Google Scholar 

  23. Kreuer, K. D. On the development of proton conducting materials for technological applications. Solid State Ion. 97, 1–15 (1997).

    Article  CAS  Google Scholar 

  24. Malavasi, L., Fisher, C. A. J. & Islam, M. S. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem. Soc. Rev. 39, 4370–4387 (2010).

    Article  CAS  Google Scholar 

  25. Poetzsch, D., Merkle, R. & Maier, J. Stoichiometry variation in materials with three mobile carriers—thermodynamics and transport kinetics exemplified for protons, oxygen vacancies, and holes. Adv. Funct. Mater. 25, 1542–1557 (2015).

    Article  CAS  Google Scholar 

  26. Lee, Y.-L., Kleis, J., Rossmeisl, J., Shao-Horn, Y. & Morgan, D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966–3970 (2011).

    Article  CAS  Google Scholar 

  27. Grimaud, A. et al. Hydration properties and rate determining steps of the oxygen reduction reaction of perovskite-related oxides as H+-SOFC cathodes. J. Electrochem. Soc. 159, B683–B694 (2012).

    Article  CAS  Google Scholar 

  28. Bielanski, A. & Haber, J. Oxygen in Catalysis (CRC, 1990).

    Book  Google Scholar 

  29. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).

    Article  CAS  Google Scholar 

  30. Wang, L., Merkle, R., Maier, J., Acartürk, T. & Starke, U. Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ films. Appl. Phys. Lett. 94, 071908 (2009).

    Article  Google Scholar 

  31. Stoerzinger, K. A. et al. Water reactivity on the LaCoO3 (001) surface: an ambient pressure x-ray photoelectron spectroscopy study. J. Phys. Chem. C 118, 19733–19741 (2014).

    Article  CAS  Google Scholar 

  32. Starr, D. E., Liu, Z., Havecker, M., Knop-Gericke, A. & Bluhm, H. Investigation of solid/vapor interfaces using ambient pressure X-ray photoelectron spectroscopy. Chem. Soc. Rev. 42, 5833–5857 (2013).

    Article  CAS  Google Scholar 

  33. Stoerzinger, K. A., Hong, W. T., Crumlin, E. J., Bluhm, H. & Shao-Horn, Y. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. Acc. Chem. Res. 48, 2976–2983 (2015).

    Article  CAS  Google Scholar 

  34. Raabe, S. et al. In situ electrochemical electron microscopy study of oxygen evolution activity of doped manganite perovskites. Adv. Funct. Mater. 22, 3378–3388 (2012).

    Article  CAS  Google Scholar 

  35. Mildner, S. et al. Environmental tem study of electron beam induced electrochemistry of Pr0.64Ca0.36MnO3 catalysts for oxygen evolution. J. Phys. Chem. C 119, 5301–5310 (2015).

    Article  CAS  Google Scholar 

  36. Su, D. S., Zhang, B. & Schlögl, R. Electron microscopy of solid catalysts—transforming from a challenge to a toolbox. Chem. Rev. 115, 2818–2882 (2015).

    Article  CAS  Google Scholar 

  37. Xie, D.-G. et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nat. Mater. 14, 899–903 (2015).

    Article  CAS  Google Scholar 

  38. Daio, T. et al. In-situ ESEM and EELS observation of water uptake and ice formation in multilayer graphene oxide. Sci. Rep. 5, 11807 (2015).

    Article  Google Scholar 

  39. Panciera, F. et al. Synthesis of nanostructures in nanowires using sequential catalyst reactions. Nat. Mater. 14, 820–825 (2015).

    Article  CAS  Google Scholar 

  40. May, K. J. et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 3, 3264–3270 (2012).

    Article  CAS  Google Scholar 

  41. Yáng, Z., Harvey, A. S. & Gauckler, L. J. Influence of CO2 on Ba0.2Sr0.8Co0.8Fe0.2O3−δ at elevated temperatures. Scripta Materialia 61, 1083–1086 (2009).

    Article  Google Scholar 

  42. Aronova, M. A., Sousa, A. A. & Leapman, R. D. EELS characterization of radiolytic products in frozen samples. Micron 42, 252–256 (2011).

    Article  CAS  Google Scholar 

  43. Martin, J. M., Vacher, B., Ponsonnet, L. & Dupuis, V. Chemical bond mapping of carbon by image-spectrum EELS in the second derivative mode. Ultramicroscopy 65, 229–238 (1996).

    Article  CAS  Google Scholar 

  44. Mohamed, R. et al. Electrocatalysis of perovskites: the influence of carbon on the oxygen evolution activity. J. Electrochem. Soc. 162, F579-F586 (2015).

    Google Scholar 

  45. Kosacki, I. & Tuller, H. L. Mixed conductivity in SrCe0.95Yb0.05O3 protonic conductors. Solid State Ion. 80, 223–229 (1995).

    Article  CAS  Google Scholar 

  46. Kessel, M., De Souza, R. A., Yoo, H.-I. & Martin, M. Strongly enhanced incorporation of oxygen into barium titanate based multilayer ceramic capacitors using water vapor. Appl. Phys. Lett. 97, 021910 (2010).

    Article  Google Scholar 

  47. Muñoz, A. et al. Crystallographic and magnetic structure of SrCoO2.5 brownmillerite: neutron study coupled with band-structure calculations. Phys. Rev. B 78, 054404 (2008).

    Article  Google Scholar 

  48. Takeda, Y. et al. Phase relation and oxygen-non-stoichiometry of perovskite-like compound SrCoOx (2.29 < x < 2.80). Z. Anorg. Allg. Chem. 540, 259–270 (1986).

    Article  Google Scholar 

  49. Ishigaki, T., Yamauchi, S., Mizusaki, J., Fueki, K. & Tamura, H. Tracer diffusion coefficient of oxide ions in LaCoO3 single crystal. J. Solid State Chem. 54, 100–107 (1984).

    Article  CAS  Google Scholar 

  50. Wang, L. et al. PLD-deposited (BaxSr1−x)(CoyFe1−y)O3−δ thin-film microelectrodes: structure aspects and oxygen incorporation kinetics. ECS Trans. 13, 85–95 (2008).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the MRSEC Program of the National Science Foundation under award number DMR-0819762 and the Skoltech-MIT Center for Electrochemical Energy Storage. The ETEM/EELS experiments were carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704, which also supported A.D.G. and E.A.S.

Author information

Authors and Affiliations

Authors

Contributions

B.H., Y.S.-H. and E.A.S. designed the experiments. B.H. and K.A.S. prepared the materials. A.D.G., E.A.S., B.H. and V.T. carried out the ETEM experiments. B.H. prepared the initial manuscript. All authors contributed to the discussions and revisions of the manuscript.

Corresponding authors

Correspondence to Eric A. Stach or Yang Shao-Horn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 816 kb)

Supplementary Information

Supplementary movie 1 (MOV 2483 kb)

Supplementary Information

Supplementary movie 2 (MOV 335 kb)

Supplementary Information

Supplementary movie 3 (MOV 952 kb)

Supplementary Information

Supplementary movie 4 (MOV 548 kb)

Supplementary Information

Supplementary movie 5 (MOV 2586 kb)

Supplementary Information

Supplementary movie 6 (MOV 3447 kb)

Supplementary Information

Supplementary movie 7 (MOV 1414 kb)

Supplementary Information

Supplementary movie 8 (MOV 1493 kb)

Supplementary Information

Supplementary movie 9 (MOV 2888 kb)

Supplementary Information

Supplementary movie 10 (MOV 934 kb)

Supplementary Information

Supplementary movie 11 (MOV 9394 kb)

Supplementary Information

Supplementary movie 12 (MOV 6000 kb)

Supplementary Information

Supplementary movie 13 (MOV 6810 kb)

Supplementary Information

Supplementary movie 14 (MOV 2236 kb)

Supplementary Information

Supplementary movie 15 (MOV 918 kb)

Supplementary Information

Supplementary movie 16 (MOV 12525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Stoerzinger, K., Tileli, V. et al. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution. Nature Mater 16, 121–126 (2017). https://doi.org/10.1038/nmat4764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing