Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Understanding trends in C–H bond activation in heterogeneous catalysis

Abstract

While the search for catalysts capable of directly converting methane to higher value commodity chemicals and liquid fuels has been active for over a century, a viable industrial process for selective methane activation has yet to be developed1. Electronic structure calculations are playing an increasingly relevant role in this search, but large-scale materials screening efforts are hindered by computationally expensive transition state barrier calculations. The purpose of the present letter is twofold. First, we show that, for the wide range of catalysts that proceed via a radical intermediate, a unifying framework for predicting C–H activation barriers using a single universal descriptor can be established. Second, we combine this scaling approach with a thermodynamic analysis of active site formation to provide a map of methane activation rates. Our model successfully rationalizes the available empirical data and lays the foundation for future catalyst design strategies that transcend different catalyst classes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Universal scaling relationship for methane C–H bond activation that proceeds via a radical-like TS.
Figure 2: TS geometries for various active site motifs.
Figure 3: C–H bond activation for different reactants.
Figure 4: Volcano plots for methane activation.
Figure 5: Identifying promising catalysts for methane activation using scaling.

References

  1. Horn, R. & Schlögl, R. Methane activation by heterogeneous catalysis. Catal. Lett. 145, 23–39 (2014).

    Article  Google Scholar 

  2. Kumar, G., Lau, S. L. J., Krcha, M. D. & Janik, M. J. Correlation of methane activation and oxide catalyst reducibility and its implications for oxidative coupling. ACS Catal. 6, 1812–1821 (2016).

    CAS  Article  Google Scholar 

  3. Wang, C. C., Siao, S. S. & Jiang, J. C–H bond activation of methane via σ–d interaction on the IrO2(110) surface: density functional theory study. J. Phys. Chem. C 116, 6367–6370 (2012).

    CAS  Article  Google Scholar 

  4. Yoo, J. S., Khan, T. S., Abild-Pedersen, F., Nørskov, J. K. & Studt, F. On the role of the surface oxygen species during A–H (A = C, N, O) bond activation: a density functional theory study. Chem. Commun. 51, 2621–2624 (2015).

    CAS  Article  Google Scholar 

  5. Weaver, J. F., Hakanoglu, C., Antony, A. & Asthagiri, A. Alkane activation on crystalline metal oxide surfaces. Chem. Soc. Rev. 43, 7536–7547 (2014).

    CAS  Article  Google Scholar 

  6. Antony, A., Asthagiri, A. & Weaver, J. F. Pathways and kinetics of methane and ethane C–H bond cleavage on PdO(101). J. Chem. Phys. 139, 104702 (2013).

    Article  Google Scholar 

  7. Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    CAS  Article  Google Scholar 

  8. Li, B. & Metiu, H. Dissociation of methane on La2O3 surfaces doped with Cu, Mg, or Zn. J. Phys. Chem. C 115, 18239–18246 (2011).

    CAS  Article  Google Scholar 

  9. Krcha, M. D., Mayernick, A. D. & Janik, M. J. Periodic trends of oxygen vacancy formation and C–H bond activation over transition metal-doped CeO2 (111) surfaces. J. Catal. 293, 103–115 (2012).

    CAS  Article  Google Scholar 

  10. Schwarz, H. Chemistry with methane: concepts rather than recipes. Angew. Chem. Int. Ed. 50, 10096–10115 (2011).

    CAS  Article  Google Scholar 

  11. Woertink, J. S. et al. A [Cu2O]2+ core in Cu-ZSM-5, the active site in the oxidation of methane to methanol. Proc. Natl Acad. Sci. USA 106, 18908–18913 (2009).

    CAS  Article  Google Scholar 

  12. Da Silva, J. C. S., Pennifold, R. C. R., Harvey, J. N. & Rocha, W. R. A radical rebound mechanism for the methane oxidation reaction promoted by the dicopper center of a pMMO enzyme: a computational perspective. Dalton Trans. 45, 2492–2504 (2016).

    CAS  Article  Google Scholar 

  13. Chin, Y. H., Buda, C., Neurock, M. & Iglesia, E. Consequences of metal-oxide interconversion for C–H bond activation during CH4 reactions on Pd catalysts. J. Am. Chem. Soc. 135, 15425–15442 (2013).

    CAS  Article  Google Scholar 

  14. Wulfers, M. J., Lobo, R. F., Ipek, B. & Teketel, S. Conversion of methane to methanol on copper-containing small-pore zeolites and zeotypes. Chem. Commun. 51, 4447–4450 (2015).

    CAS  Article  Google Scholar 

  15. Hammond, C. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 51, 5129–5133 (2012).

    CAS  Article  Google Scholar 

  16. Grundner, S. et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015).

    Article  Google Scholar 

  17. Groothaert, M. H., Smeets, P. J., Sels, B. F., Jacobs, P. A. & Schoonheydt, R. A. Selective oxidation of methane by the bis (μ-oxo) dicopper core stabilized on ZSM-5 and mordenite zeolites. J. Am. Chem. Soc. 127, 1394–1395 (2005).

    CAS  Article  Google Scholar 

  18. Verma, P. et al. Mechanism of oxidation of ethane to ethanol at Iron(IV)-oxo sites in magnesium-diluted Fe2(dobdc). J. Am. Chem. Soc. 137, 5770–5781 (2015).

    CAS  Article  Google Scholar 

  19. Xiao, D. J. et al. Oxidation of ethane to ethanol by N2O in a metal-organic framework with coordinatively unsaturated iron(II) sites. Nat. Chem. 6, 590–595 (2014).

    CAS  Article  Google Scholar 

  20. Impeng, S. et al. Methane activation on Fe- and FeO-embedded graphene and boron nitride sheet: role of atomic defects in catalytic activities. RSC Adv. 5, 97918–97927 (2015).

    CAS  Article  Google Scholar 

  21. Sun, X., Li, B. & Metiu, H. Methane dissociation on Li-, Na-, K-, and Cu-doped flat and stepped CaO(001). J. Phys. Chem. C 117, 7114–7122 (2013).

    CAS  Article  Google Scholar 

  22. Lu, Y. et al. A high coking-resistance catalyst for methane aromatization. Chem. Commun. 2001, 2048–2049 (2001).

    Article  Google Scholar 

  23. Tyo, E. C. et al. Oxidative dehydrogenation of cyclohexane on cobalt oxide (Co3O4) nanoparticles: the effect of particle size on activity and selectivity. ACS Catal. 2, 2409–2423 (2012).

    CAS  Article  Google Scholar 

  24. Atzkern, S., Borisenko, S., Knupfer, M. & Golden, M. Valence-band excitations in V2O5 . Phys. Rev. B 5, 5849–5852 (2000).

    Google Scholar 

  25. Fu, G., Chen, Z. N., Xu, X. & Wan, H. L. Understanding the reactivity of the tetrahedrally coordinated high-valence d0 transition metal oxides toward the C–H bond activation of alkanes: a cluster model study. J. Phys. Chem. A 112, 717–721 (2008).

    CAS  Article  Google Scholar 

  26. Chen, K., Xie, S., Bell, A. T. & Iglesia, E. Alkali effects on molybdenum oxide catalysts for the oxidative dehydrogenation of propane. J. Catal. 195, 244–252 (2000).

    CAS  Article  Google Scholar 

  27. Tsai, C., Latimer, A. A., Yoo, J. S., Studt, F. & Abild-Pedersen, F. Predicting promoter-induced bond activation on solid catalysts using elementary bond orders. J. Phys. Chem. Lett. 6, 3670–3674 (2015).

    CAS  Article  Google Scholar 

  28. Karp, E. M., Silbaugh, T. L. & Campbell, C. T. Bond energies of molecular fragments to metal surfaces track their bond energies to H atoms. J. Am. Chem. Soc. 136, 4137–4140 (2014).

    CAS  Article  Google Scholar 

  29. Medford, A. J. et al. Assessing the reliability of calculated catalytic ammonia synthesis rates. Science 345, 197–200 (2014).

    CAS  Article  Google Scholar 

  30. Wellendorff, J. et al. Density functionals for surface science: exchange-correlation model development with Bayesian error estimation. Phys. Rev. B 85, 235149 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Support from the US Department of Energy Office of Basic Energy Science to the SUNCAT Center for Interface Science and Catalysis is gratefully acknowledged. The research of A.A.L. was conducted with Government support under and awarded by DoD, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. A.R.K. acknowledges the computing resources from the Carbon High-Performance Computing Cluster at Argonne National Laboratory under proposal CNM-46405. C.T. acknowledges support from the National Science Foundation Graduate Research Fellowship Program (GRFP) Grant DGE-114747. J.H.M. acknowledges funding from the NSF GRFP, grant number DGE-114747, and also the Center of Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center funded by the US Department of Energy, Office of Basic Energy Sciences under award number DE-SC0001060. J.S.Y. appreciates the financial support from the US DOS via the International Fulbright Science & Technology Award programme. H.A. receives funding from Aramco Services Company.

Author information

Authors and Affiliations

Authors

Contributions

A.A.L., A.R.K., H.A., J.S.Y. and J.H.M. performed the DFT calculations; A.A.L. and A.R.K. analysed the results and prepared the manuscript. All authors contributed to the discussion and approved the manuscript. A.A.L. and A.R.K. contributed equally to this work.

Corresponding author

Correspondence to Jens K. Nørskov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2507 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Latimer, A., Kulkarni, A., Aljama, H. et al. Understanding trends in C–H bond activation in heterogeneous catalysis. Nature Mater 16, 225–229 (2017). https://doi.org/10.1038/nmat4760

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4760

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing