Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermoelectric detection and imaging of propagating graphene plasmons


Controlling, detecting and generating propagating plasmons by all-electrical means is at the heart of on-chip nano-optical processing1,2,3. Graphene carries long-lived plasmons that are extremely confined and controllable by electrostatic fields4,5,6,7; however, electrical detection of propagating plasmons in graphene has not yet been realized. Here, we present an all-graphene mid-infrared plasmon detector operating at room temperature, where a single graphene sheet serves simultaneously as the plasmonic medium and detector. Rather than achieving detection via added optoelectronic materials, as is typically done in other plasmonic systems8,9,10,11,12,13,14,15, our device converts the natural decay product of the plasmon—electronic heat—directly into a voltage through the thermoelectric effect16,17. We employ two local gates to fully tune the thermoelectric and plasmonic behaviour of the graphene. High-resolution real-space photocurrent maps are used to investigate the plasmon propagation and interference, decay, thermal diffusion, and thermoelectric generation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Concept and device.
Figure 2: Plasmon photocurrent spatial maps.
Figure 3: Linecuts along xtip and ytip.
Figure 4: Gate dependence.


  1. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010).

    CAS  Article  Google Scholar 

  2. Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).

    CAS  Article  Google Scholar 

  3. Dyakonov, M. & Shur, M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans. Electron Devices 43, 380–387 (1996).

    CAS  Article  Google Scholar 

  4. Wunsch, B., Stauber, T., Sols, F. & Guinea, F. Dynamical polarization of graphene at finite doping. New J. Phys. 8, 318 (2006).

    Article  Google Scholar 

  5. Hwang, E. H. & Das Sarma, S. Dielectric function, screening, and plasmons in two-dimensional graphene. Phys. Rev. B 75, 205418 (2007).

    Article  Google Scholar 

  6. Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Google Scholar 

  7. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photon. 6, 749–758 (2012).

    CAS  Article  Google Scholar 

  8. Ditlbacher, H. et al. Organic diodes as monolithically integrated surface plasmon polariton detectors. Appl. Phys. Lett. 89, 161101 (2006).

    Article  Google Scholar 

  9. Neutens, P., Van Dorpe, P., De Vlaminck, I., Lagae, L. & Borghs, G. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nat. Photon. 3, 283–286 (2009).

    CAS  Article  Google Scholar 

  10. Falk, A. L. et al. Near-field electrical detection of optical plasmons and single-plasmon sources. Nat. Phys. 5, 475–479 (2009).

    CAS  Article  Google Scholar 

  11. Heeres, R. W. et al. On-chip single plasmon detection. Nano Lett. 10, 661–664 (2010).

    CAS  Article  Google Scholar 

  12. Dufaux, T., Dorfmüller, J., Vogelgesang, R., Burghard, M. & Kern, K. Surface plasmon coupling to nanoscale Schottky-type electrical detectors. Appl. Phys. Lett. 97, 161110 (2010).

    Article  Google Scholar 

  13. Goykhman, I., Desiatov, B., Khurgin, J., Shappir, J. & Levy, U. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 11, 2219–2224 (2011).

    CAS  Article  Google Scholar 

  14. Goodfellow, K. M., Chakraborty, C., Beams, R., Novotny, L. & Vamivakas, A. N. Direct on-chip optical plasmon detection with an atomically thin semiconductor. Nano Lett. 15, 5477–5481 (2015).

    CAS  Article  Google Scholar 

  15. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotech. 10, 25–34 (2015).

    CAS  Article  Google Scholar 

  16. Innes, R. & Sambles, J. Simple thermal detection of surface plasmon-polaritons. Solid State Commun. 56, 493–496 (1985).

    CAS  Article  Google Scholar 

  17. Weeber, J.-C. et al. Thermo-electric detection of waveguided surface plasmon propagation. Appl. Phys. Lett. 99, 031113 (2011).

    Article  Google Scholar 

  18. Principi, A. et al. Plasmon losses due to electron-phonon scattering: the case of graphene encapsulated in hexagonal boron nitride. Phys. Rev. B 90, 165408 (2014).

    Article  Google Scholar 

  19. Freitag, M. et al. Photocurrent in graphene harnessed by tunable intrinsic plasmons. Nat. Commun. 4, 1951 (2013).

    Article  Google Scholar 

  20. Cai, X. et al. Plasmon-enhanced terahertz photodetection in graphene. Nano Lett. 15, 4295–4302 (2015).

    CAS  Article  Google Scholar 

  21. Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    CAS  Article  Google Scholar 

  22. Woessner, A. et al. Near-field photocurrent nanoscopy on bare and encapsulated graphene. Nat. Commun. 7, 10783 (2016).

    CAS  Article  Google Scholar 

  23. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    CAS  Article  Google Scholar 

  24. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    CAS  Article  Google Scholar 

  25. Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2010).

    CAS  Article  Google Scholar 

  26. Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2011).

    CAS  Article  Google Scholar 

  27. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    CAS  Article  Google Scholar 

  28. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    CAS  Article  Google Scholar 

  29. Gerber, J. A., Berweger, S., O’Callahan, B. T. & Raschke, M. B. Phase-resolved surface plasmon interferometry of graphene. Phys. Rev. Lett. 113, 055502 (2014).

    Article  Google Scholar 

  30. Liu, B., Liu, Y. & Shen, S. Thermal plasmonic interconnects in graphene. Phys. Rev. B 90, 195411 (2014).

    Article  Google Scholar 

  31. Koppens, F. H. L. et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotech. 9, 780–793 (2014).

    CAS  Article  Google Scholar 

  32. Svintsov, D., Devizorova, Z., Otsuji, T. & Ryzhii, V. Emission and amplification of surface plasmons in resonant-tunneling van der Waals heterostructures. Preprint at (2015).

  33. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Article  Google Scholar 

  34. McLeod, A. S. et al. Model for quantitative tip-enhanced spectroscopy and the extraction of nanoscale-resolved optical constants. Phys. Rev. B 90, 085136 (2014).

    Article  Google Scholar 

  35. Falkovsky, L. A. & Varlamov, A. A. Space-time dispersion of graphene conductivity. Eur. Phys. J. B 56, 281–284 (2007).

    CAS  Article  Google Scholar 

Download references


We thank M. Polini, A. Nikitin and K.-J. Tielrooij for fruitful discussions. F.H.L.K. and R.H. acknowledge support by the EC under Graphene Flagship (contract no. CNECT-ICT-604391). F.H.L.K. acknowledges support by Fundacio Cellex Barcelona, the ERC starting grant (307806, CarbonLight), the Government of Catalonia through the SGR grant (2014-SGR-1535), the Mineco grants Ramón y Cajal (RYC-2012-12281) and Plan Nacional (FIS2013-47161-P), and the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0522). R.H. acknowledges support from the Spanish Ministry of Economy and Competitiveness (national project MAT2015-65525-R). Y.G., C.T. and J.H. acknowledge support from the US Office of Naval Research N00014-13-1-0662. C.T. was supported under contract FA9550-11-C-0028 and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. This research used resources of the Center for Functional Nanomaterials, which is a US DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. This work used open source software (,,

Author information

Authors and Affiliations



M.B.L. performed the measurements, analysis, modelling, and wrote the manuscript. Y.G. and C.T. fabricated the samples. A.W. and P.A.-G. helped with measurements. K.W. and T.T. synthesized the hBN samples. J.H., R.H. and F.H.L.K. supervised the work, discussed the results and co-wrote the manuscript. All authors contributed to the scientific discussion and manuscript revisions.

Corresponding author

Correspondence to Frank H. L. Koppens.

Ethics declarations

Competing interests

R.H. is co-founder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study. All other authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 667 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lundeberg, M., Gao, Y., Woessner, A. et al. Thermoelectric detection and imaging of propagating graphene plasmons. Nature Mater 16, 204–207 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing