Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Superconducting exchange coupling between ferromagnets


Recent discoveries from superconductor (S)/ferromagnet (FM) heterostructures include π-junctions1, triplet pairing2,3, critical temperature (Tc) control in FM/S/FM superconducting spin valves (SSVs)4,5,6,7 and critical current control in S/FM/N/FM/S spin valve Josephson junctions8,9 (N: normal metal). In all cases, the magnetic state of the device, generally set by the applied field, controls the superconducting response. We report here the observation of the converse effect, that is, direct superconducting control of the magnetic state in GdN/Nb/GdN SSVs. A model10 for an antiferromagnetic effective exchange interaction based on the coupling of the superconducting condensation energy to the magnetic state can explain the Nb thickness and temperature dependence of this effect. This superconducting exchange interaction is fundamentally different in origin from the various exchange coupling phenomena that underlie conventional spin electronics (spintronics), and provides a mechanism for the active control of the magnetic state in superconducting spintronics11.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Temperature dependence of spin valve effects in a GdN(3)/Nb(8)/GdN(5) heterostructure.
Figure 2: Influence of superconductor thickness on temperature-dependent coercive fields and spin valve effect in GdN/Nb/GdN heterostructures.
Figure 3: Superconductor-mediated antiferromagnetic exchange coupling in GdN/Nb/GdN SSVs.


  1. Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: evidence for a π junction. Phys. Rev. Lett. 86, 2427–2430 (2001).

    CAS  Article  Google Scholar 

  2. Robinson, J. W. A., Witt, J. D. S. & Blamire, M. G. Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010).

    CAS  Article  Google Scholar 

  3. Khaire, T. S., Khasawneh, M. A., Pratt, W. P. & Birge, N. O. Observation of spin-triplet superconductivity in Co-based Josephson junctions. Phys. Rev. Lett. 104, 137002 (2010).

    Article  Google Scholar 

  4. Tagirov, L. R. Low-field superconducting spin switch based on a superconductor/ferromagnet multilayer. Phys. Rev. Lett. 83, 2058–2061 (1999).

    CAS  Article  Google Scholar 

  5. Li, B. et al. Superconducting spin switch with infinite magnetoresistance induced by an internal exchange field. Phys. Rev. Lett. 110, 097001 (2013).

    Article  Google Scholar 

  6. Gu, Y., Halász, G. B., Robinson, J. W. A. & Blamire, M. G. Large superconducting spin valve effect and ultra-small exchange-splitting in epitaxial rare-earth-niobium trilayers. Phys. Rev. Lett. 115, 067201 (2015).

    Article  Google Scholar 

  7. Gu, J. Y. et al. Magnetization orientation dependence of the superconducting transition temperature in ferromagnet–superconductor–ferromagnet system: CuNi/Nb/CuNi. Phys. Rev. Lett. 89, 267001 (2002).

    CAS  Article  Google Scholar 

  8. Bell, C. et al. Controllable Josephson current through a pseudospin-valve structure. Appl. Phys. Lett. 84, 1153–1155 (2004).

    CAS  Article  Google Scholar 

  9. Baek, B., Rippard, W. H., Benz, S. P., Russek, S. E. & Dresselhaus, P. D. Hybrid superconducting-magnetic memory device using competing order parameters. Nat. Commun. 5, 3888 (2014).

    CAS  Article  Google Scholar 

  10. de Gennes, P. G. Coupling between ferromagnets through a superconducting layer. Phys. Lett. 23, 10–11 (1966).

    CAS  Article  Google Scholar 

  11. Robinson, J. W. A. & Linder, J. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    Article  Google Scholar 

  12. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    CAS  Article  Google Scholar 

  13. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956).

    Article  Google Scholar 

  14. Bruno, P. & Chappert, C. Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer. Phys. Rev. Lett. 67, 1602–1605 (1991).

    CAS  Article  Google Scholar 

  15. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    CAS  Article  Google Scholar 

  16. Grunberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Layered magnetic-structures—evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. Phys. Rev. Lett. 57, 2442–2445 (1986).

    CAS  Article  Google Scholar 

  17. Fullerton, E. E. et al. Antiferromagnetically coupled magnetic media layers for thermally stable high-density recording. Appl. Phys. Lett. 77, 3806–3808 (2000).

    CAS  Article  Google Scholar 

  18. van Duzer, T. & Turner, C. W. Principles of Superconductive Devices and Circuits (Elsevier, 1981).

    Google Scholar 

  19. Slonczewski, J. C. Origin of biquadratic exchange in magnetic multilayers (invited). J. Appl. Phys. 73, 5957–5962 (1993).

    CAS  Article  Google Scholar 

  20. Senapati, K., Fix, T., Vickers, M. E., Blamire, M. G. & Barber, Z. H. Magnetic exchange hardening in polycrystalline GdN thin films. J. Phys. Condens. Matter 22, 302003 (2010).

    CAS  Article  Google Scholar 

  21. Sipr, O. & Gyorffy, B. L. Oscillatory magnetic coupling between metallic multilayers across superconducting spacers. J. Phys. Condens. Matter 7, 5239–5269 (1995).

    CAS  Article  Google Scholar 

  22. Sá de Melo, C. A. R. Magnetic exchange coupling in ferromagnet/superconductor/ferromagnet multilayers. Phys. Rev. Lett. 79, 1933–1936 (1997).

    Article  Google Scholar 

  23. Senapati, K., Blamire, M. G. & Barber, Z. H. Suppression of magnetic coupling in superconducting GdN-NbN-GdN trilayers. Appl. Phys. Lett. 103, 132406 (2013).

    Article  Google Scholar 

  24. Mattson, J. E., Sowers, C. H., Berger, A. & Bader, S. D. Magnetoresistivity and oscillatory interlayer magnetic coupling of sputtered Fe/Nb superlattices. Phys. Rev. Lett. 68, 3252–3255 (1992).

    CAS  Article  Google Scholar 

  25. Curran, P. J. et al. Irreversible magnetization switching at the onset of superconductivity in a superconductor ferromagnet hybrid. Appl. Phys. Lett. 107, 262602 (2015).

    Article  Google Scholar 

  26. Papaconstantopoulos, D. A., Pickett, W. E., Klein, B. M. & Boyer, L. L. Electronic properties of transition-metal nitrides: the group-V and group-VI nitrides VN, NbN, TaN, CrN, MoN, and WN. Phys. Rev. B 31, 752–761 (1985).

    CAS  Article  Google Scholar 

  27. Blamire, M. G., Kirk, E. C. G., Evetts, J. E. & Klapwijk, T. M. Extreme critical-temperature enhancement of Al by tunneling in Nb/AlOx/Al/AlOx/Nb tunnel-junctions. Phys. Rev. Lett. 66, 220–223 (1991).

    CAS  Article  Google Scholar 

  28. Senapati, K., Blamire, M. G. & Barber, Z. H. Spin-filter Josephson junctions. Nat. Mater. 10, 849–852 (2011).

    CAS  Article  Google Scholar 

  29. Pal, A., Barber, Z. H., Robinson, J. W. A. & Blamire, M. G. Pure second harmonic current-phase relation in spin-filter Josephson junctions. Nat. Commun. 5, 3340 (2014).

    Article  Google Scholar 

  30. Gingrich, E. C. et al. Controllable 0-π Josephson junctions containing a ferromagnetic spin valve. Nat. Phys. 12, 564–567 (2016).

    CAS  Article  Google Scholar 

Download references


We thank J. W. A. Robinson and B. J. Hickey for valuable discussions. This work was supported by ERC AdG ‘Superspin’ and EPSRC Programme Grant EP/N017242/1.

Author information

Authors and Affiliations



Z.H.B. designed and coordinated the project, Y.Z. and A.P. designed and grew the samples and performed the measurements, M.G.B. developed the model. All authors contributed to writing the paper.

Corresponding author

Correspondence to Mark G. Blamire.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 10837 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Pal, A., Blamire, M. et al. Superconducting exchange coupling between ferromagnets. Nature Mater 16, 195–199 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing