Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers

Abstract

The ability to create and manipulate materials in two-dimensional (2D) form has repeatedly had transformative impact on science and technology. In parallel with the exfoliation and stacking of intrinsically layered crystals1,2,3,4,5, atomic-scale thin film growth of complex materials has enabled the creation of artificial 2D heterostructures with novel functionality6,7,8,9 and emergent phenomena, as seen in perovskite heterostructures10,11,12. However, separation of these layers from the growth substrate has proved challenging, limiting the manipulation capabilities of these heterostructures with respect to exfoliated materials. Here we present a general method to create freestanding perovskite membranes. The key is the epitaxial growth of water-soluble Sr3Al2O6 on perovskite substrates, followed by in situ growth of films and heterostructures. Millimetre-size single-crystalline membranes are produced by etching the Sr3Al2O6 layer in water, providing the opportunity to transfer them to arbitrary substrates and integrate them with heterostructures of semiconductors and layered compounds13,14.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Crystal structure and epitaxial growth of Sr3Al2O6.
Figure 2: Sr3Al2O6 surface structure.
Figure 3: Synthesis of freestanding perovskite membranes.
Figure 4: Crystalline structure of epitaxial membrane films before and after release.
Figure 5: Magnetic and electrical properties of La0.7Sr0.3MnO3 single-layer and SL films before and after release.

References

  1. 1

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  2. 2

    Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Osada, M. & Sasaki, T. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24, 210–228 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Butler, S. Z. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Wang, Q.-Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012).

    Article  Google Scholar 

  7. 7

    Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Shishido, H. et al. Tuning the dimensionality of the heavy fermion compound CeIn3 . Science 327, 980–983 (2010).

    CAS  Article  Google Scholar 

  9. 9

    Bode, M. et al. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 447, 190–193 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Caviglia, A. D. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Mannhart, J. & Schlom, D. G. Oxide interfaces-an opportunity for electronics. Science 327, 1607–1611 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Alferov, Z. I. Semiconductor Heterostructures: Physical Processes and Applications (MIR Publishers, 1989).

    Google Scholar 

  14. 14

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Bruel, M. Application of hydrogen ion beams to silicon on insulator material technology. Nucl. Instrum. Methods Phys. Res. Sect. B 108, 313–319 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Wong, W. S., Sands, T. & Cheung, N. W. Damage-free separation of GaN thin films from sapphire substrates. Appl. Phys. Lett. 72, 599–601 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Matthews, J. W. Growth of face-centered-cubic metals on sodium chloride substrates. J. Vac. Sci. Technol. 3, 133-145 (1966).

    Article  Google Scholar 

  18. 18

    Catlin, A. & Walker, W. P. Mechanical properties of thin single-crystal gold films. J. App. Phys. 31, 2135–2139 (1960).

    Article  Google Scholar 

  19. 19

    Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 45–53 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Yablonovitch, E., Gmitter, T., Harbison, J. P. & Bhat, R. Extreme selectivity in the lift-off of epitaxial GaAs films. Appl. Phys. Lett. 51, 2222–2224 (1987).

    CAS  Article  Google Scholar 

  21. 21

    Gan, Q., Rao, R. A., Eom, C. B., Garrett, J. L. & Lee, M. Direct measurement of strain effects on magnetic and electrical properties of epitaxial SrRuO3 thin films. Appl. Phys. Lett. 72, 978–980 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Paskiewicz, D. M., Sichel-Tissot, R., Karapetrova, E., Stan, L. & Fong, D. D. Single-crystalline SrRuO3 nanomembranes: a platform for flexible oxide electronics. Nano Lett. 16, 534–542 (2016).

    CAS  Article  Google Scholar 

  23. 23

    Bullard, J. W. et al. Mechanisms of cement hydration. Cem. Concr. Res. 12, 1208–1223 (2011).

    Article  Google Scholar 

  24. 24

    Alonso, J. A., Rasines, I. & Soubeyroux, J. L. Tristrontium dialuminum hexaoxide: an intricate superstructure of perovskite. Inorg. Chem. 29, 4768–4771 (1990).

    CAS  Article  Google Scholar 

  25. 25

    Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Chen, X. et al. High-quality and efficient transfer of large area graphene films onto different substrates. Carbon 56, 271–278 (2013).

    CAS  Article  Google Scholar 

  27. 27

    Kourkoutis, L. F., Song, J. H., Hwang, H. Y. & Muller, D. A. Microscopic origins for stabilizing room-temperature ferromagnetism in ultrathin manganite layers. Proc. Natl Acad. Sci. USA 107, 11682–11685 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Izumi, M., Ogimoto, Y., Manako, T., Kawasaki, M. & Tokura, Y. Interface effect and its doping dependence in La1−xSrxMnO3/SrTiO3 superlattices. J. Phys. Soc. Jpn 71, 2621–2624 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Thiele, C., Dorr, K., Bilani, O., Rodel, J. & Schultz, L. Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A = Sr, Ca). Phys. Rev. B 75, 054408 (2007).

    Article  Google Scholar 

  30. 30

    Evans, A., Bieberle-Hütter, A., Rupp, J. L. M. & Gauckler, L. J. Review on microfabricated micro-solid oxide fuel cell membranes. J. Power Sources 194, 119–129 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Wang, Z. L. & Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Ko, H. et al. Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors. Nature 468, 286–289 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488–492 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515 (heterostructure synthesis); the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4415 (development of release and transfer processes); and the Cornell Center for Materials Research with funding from the NSF MRSEC programme DMR-1120296 (electron microscopy).

Author information

Affiliations

Authors

Contributions

D.L. and S.S.H. fabricated and characterized the epitaxial heterostructures and freestanding membranes. D.J.B. and L.F.K. measured and analysed the STEM data. D.L., Y.H. and H.Y.H. designed the experiment and wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Yasuyuki Hikita or Harold Y. Hwang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 475 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Baek, D., Hong, S. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nature Mater 15, 1255–1260 (2016). https://doi.org/10.1038/nmat4749

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing