Orientational order controls crystalline and amorphous thermal transport in superatomic crystals

Abstract

In the search for rationally assembled functional materials, superatomic crystals (SACs) have recently emerged as a unique class of compounds that combine programmable nanoscale building blocks and atomic precision1,2,3,4,5,6. As such, they bridge traditional semiconductors, molecular solids, and nanocrystal arrays by combining their most attractive features1,2,3,4,5,6,7,8,9,10,11. Here, we report the first study of thermal transport in SACs, a critical step towards their deployment as electronic, thermoelectric, and phononic materials10,11,12. Using frequency domain thermoreflectance (FDTR), we measure thermal conductivity in two series of SACs: the unary compounds Co6E8(PEt3)6 (E = S, Se, Te) and the binary compounds [Co6E8(PEt3)6][C60]2. We find that phonons that emerge from the periodicity of the superstructures contribute to thermal transport10,13,14. We also demonstrate a transformation from amorphous to crystalline thermal transport behaviour through manipulation of the vibrational landscape and orientational order of the superatoms. The structural control of orientational order enabled by the atomic precision of SACs expands the conceptual design space for thermal science.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: SAC structures and FDTR measurement.
Figure 2: Experimental and theoretical heat capacities of SACs.
Figure 3: Thermal conductivity of SACs as a function of average sound speed.
Figure 4: Thermal conductivity and structural parameters of SACs as a function of temperature.

References

  1. 1

    Claridge, S. A. et al. Cluster-assembled materials. ACS Nano 3, 244–255 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Roy, X. et al. Nanoscale atoms in solid-state chemistry. Science 341, 157–160 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Baudron, S. A. et al. (EDT-TTF-CONH2)6[Re6Se8(CN)6], a metallic kagome-type organic-inorganic hybrid compound: electronic instability, molecular motion, and charge localization. J. Am. Chem. Soc. 127, 11785–11797 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Tomalia, D. A. & Khanna, S. N. A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive Mendeleev-like nanoperiodic tables. Chem. Rev. 116, 2705–2774 (2016).

    CAS  Article  Google Scholar 

  5. 5

    Zheng, Z., Long, J. R. & Holm, R. H. A basis set of Re6Se8 cluster building blocks and demonstration of their linking capability: directed synthesis of an Re12Se16 dicluster. J. Am. Chem. Soc. 119, 2163–2171 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Lee, C.-H. et al. Ferromagnetic ordering in superatomic solids. J. Am. Chem. Soc. 136, 16926–16931 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Cargnello, M. et al. Substitutional doping in nanocrystal superlattices. Nature 524, 450–453 (2015).

    CAS  Article  Google Scholar 

  8. 8

    O’Brien, M. N., Jones, M. R., Lee, B. & Mirkin, C. A. Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater. 14, 833–839 (2015).

    Article  Google Scholar 

  9. 9

    Yoon, B. et al. Hydrogen-bonded structure and mechanical chiral response of a silver nanoparticle superlattice. Nat. Mater. 13, 807–811 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Poyser, C. L. et al. Coherent acoustic phonons in colloidal semiconductor nanocrystal superlattices. ACS Nano 10, 1163–1169 (2016).

    CAS  Article  Google Scholar 

  11. 11

    Ong, W.-L., Rupich, S. M., Talapin, D. V., McGaughey, A. J. H. & Malen, J. A. Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat. Mater. 12, 410–415 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Ong, W.-L., Majumdar, S., Malen, J. A. & McGaughey, A. J. H. Coupling of organic and inorganic vibrational states and their thermal transport in nanocrystal arrays. J. Phys. Chem. C 118, 7288–7295 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Ravichandran, J. et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. 13, 168–172 (2013).

    Article  Google Scholar 

  14. 14

    Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Majumdar, S. et al. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions. Nano Lett. 15, 2985–2991 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Brus, L. Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986).

    CAS  Article  Google Scholar 

  17. 17

    Murray, C. B., Kagan, C. R. & Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Schettino, V. et al. The vibrational spectrum of fullerene C60 . J. Phys. Chem. A 105, 11192–11196 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Diky, V. V. & Kabo, G. J. Thermodynamic properties of C60 and C70 fullerenes. Russ. Chem. Rev. 69, 95–104 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Yu, R., Tea, N., Salamon, M., Lorents, D. & Malhotra, R. Thermal conductivity of single crystal C60 . Phys. Rev. Lett. 68, 2050–2053 (1992).

    CAS  Article  Google Scholar 

  21. 21

    Malen, J. A. et al. Optical measurement of thermal conductivity using fiber aligned frequency domain thermoreflectance. J. Heat Transfer 133, 081601 (2011).

    Article  Google Scholar 

  22. 22

    Kinsler, L. E., Frey, A. R., Coppens, A. B. & Sanders, J. V. Fundamentals of Acoustics (Wiley, 1999).

    Google Scholar 

  23. 23

    Allen, P. B., Feldman, J. L., Fabian, J. & Wooten, F. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Phil. Mag. B 79, 1715–1731 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Cahill, D., Watson, S. & Pohl, R. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).

    CAS  Article  Google Scholar 

  25. 25

    Wang, X., Liman, C. D., Treat, N. D., Chabinyc, M. L. & Cahill, D. G. Ultralow thermal conductivity of fullerene derivatives. Phys. Rev. B 88, 075310 (2013).

    Article  Google Scholar 

  26. 26

    Duda, J. C., Hopkins, P. E., Shen, Y. & Gupta, M. C. Exceptionally low thermal conductivities of films of the fullerene derivative PCBM. Phys. Rev. Lett. 110, 015902 (2013).

    Article  Google Scholar 

  27. 27

    Olson, J. R., Topp, K. A. & Pohl, R. O. Specific heat and thermal conductivity of solid fullerenes. Science 259, 1145–1148 (1993).

    CAS  Article  Google Scholar 

  28. 28

    Huang, B. L. et al. Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement. Int. J. Heat Mass Transfer 50, 405–411 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Yang, F. & Dames, C. Mean free path spectra as a tool to understand thermal conductivity in bulk and nanostructures. Phys. Rev. B 87, 035437 (2013).

    Article  Google Scholar 

  30. 30

    David, W. I. F. et al. Crystal structure and bonding of ordered C60 . Nature 353, 147–149 (1991).

    CAS  Article  Google Scholar 

  31. 31

    Lu, J. P., Li, X.-P. & Martin, R. M. Ground state and phase transitions in solid C60 . Phys. Rev. Lett. 68, 1551–1554 (1992).

    CAS  Article  Google Scholar 

  32. 32

    Pisoni, A. et al. Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3 . J. Phys. Chem. Lett. 5, 2488–2492 (2014).

    CAS  Article  Google Scholar 

  33. 33

    Kobelev, N. P., Nikolaev, R. K., Soifer, Y. M. & Khasanov, S. S. The elastic stiffness matrix of single-crystal C60 . Chem. Phys. Lett. 276, 263–265 (1997).

    CAS  Article  Google Scholar 

  34. 34

    Tsui, T. Y. & Pharr, G. M. Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J. Mater. Res. 14, 292–301 (1999).

    CAS  Article  Google Scholar 

  35. 35

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the Center for Precision Assembly of Superstratic and Superatomic Solids, an NSF MRSEC (Award Number DMR-1420634). J.A.M. and W.-L.O. acknowledge support from the Army Research Office Grant W911NF-14-0350 and the National Science Foundation CAREER Award ENG-1149374. A.J.H.M. acknowledges support from NSF award DMR-1507325. X.R. and E.S.O’B. thank the Air Force Office of Scientific Research (Award Number FA9550-14-1-0381). X-ray diffraction measurements were performed in the Shared Materials Characterization Laboratory at Columbia University. Use of the Shared Materials Characterization Laboratory was made possible by funding from Columbia University. We thank R. Hastie for her help in making the illustrations. We also thank G. Elbaz and K. Lee for their help with sample preparation, and C. Nuckolls, M. Steigerwald, L. Campos, X. Zhu and C. Dean for the use of their instruments and for useful discussions.

Author information

Affiliations

Authors

Contributions

W.-L.O. conducted the FDTR and DSC measurements on the SACs and first-principles calculations. E.S.O’B. synthesized SACs and together with D.W.P. conducted SCXRD characterization. P.S.M.D. conducted the nanoindentations. W.-L.O. and E.S.O’B. wrote the manuscript. J.A.M., X.R., A.J.H.M. and C.F.H.III edited the manuscript. All authors discussed the data and commented on the manuscript.

Corresponding authors

Correspondence to Jonathan A. Malen or Xavier Roy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1785 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 100 K; CCDC reference 1497864 (CIF 500 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 125 K; CCDC reference 1497865 (CIF 482 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 150 K; CCDC reference 1497866 (CIF 488 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 175 K; CCDC reference 1497867 (CIF 484 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 185 K; CCDC reference 1497868 (CIF 466 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 190 K; CCDC reference 1497869 (CIF 564 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 200 K; CCDC reference 1497870 (CIF 592 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 225 K; CCDC reference 1497871 (CIF 591 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 250 K; CCDC reference 1497872 (CIF 597 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 275 K; CCDC reference 1497873 (CIF 615 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 300 K; CCDC reference 1497874 (CIF 575 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 100 K; CCDC reference 1497876 (CIF 831 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 125 K; CCDC reference 1497877 (CIF 825 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 150 K; CCDC reference 1497878 (CIF 838 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 175 K; CCDC reference 1497879 (CIF 838 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 200 K; CCDC reference 1497880 (CIF 842 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 225 K; CCDC reference 1497881 (CIF 841 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 250 K; CCDC reference 1497882 (CIF 851 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 275 K; CCDC reference 1497883 (CIF 854 kb)

Supplementary Information

Crystallographic information for [Co6Se8(PEt3)6][C60]2 at 300 K; CCDC reference 1497884 (CIF 856 kb)

Supplementary Information

Crystallographic information for Co6S8(PEt3)6 at 100 K; CCDC reference 1497860 (CIF 440 kb)

Supplementary Information

Crystallographic information for Co6S8(PEt3)6 at 293 K; CCDC reference 1497861 (CIF 210 kb)

Supplementary Information

Crystallographic information for Co6S8(PEt3)6 at 100 K; CCDC reference 1497862 (CIF 409 kb)

Supplementary Information

Crystallographic information for Co6S8(PEt3)6 at 293 K; CCDC reference 1497863 (CIF 403 kb)

Supplementary Information

Crystallographic information for Co6S8(PEt3)6 at 100 K; CCDC reference 1497875 (CIF 1070 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ong, W., O’Brien, E., Dougherty, P. et al. Orientational order controls crystalline and amorphous thermal transport in superatomic crystals. Nature Mater 16, 83–88 (2017). https://doi.org/10.1038/nmat4739

Download citation

Further reading