Energy and fuels from electrochemical interfaces

Abstract

Advances in electrocatalysis at solid–liquid interfaces are vital for driving the technological innovations that are needed to deliver reliable, affordable and environmentally friendly energy. Here, we highlight the key achievements in the development of new materials for efficient hydrogen and oxygen production in electrolysers and, in reverse, their use in fuel cells. A key issue addressed here is the degree to which the fundamental understanding of the synergy between covalent and non-covalent interactions can form the basis for any predictive ability in tailor-making real-world catalysts. Common descriptors such as the substrate–hydroxide binding energy and the interactions in the double layer between hydroxide-oxides and H---OH are found to control individual parts of the hydrogen and oxygen electrochemistry that govern the efficiency of water-based energy conversion and storage systems. Links between aqueous- and organic-based environments are also established, encouraging the 'fuel cell' and 'battery' communities to move forward together.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Solid–liquid interfaces in aqueous and organic environments.
Figure 2: Materials-by-design and double-layer-by-design strategy in action: development of the most active interfaces for the HER in alkaline electrolyte.
Figure 3: The OER is controlled by the balance between activity and stability of anode materials.
Figure 4: Materials-by-design strategy for development of the most active materials for HOR in alkaline environments.
Figure 5: Materials-by-design strategy for development of the most active materials for ORR in PEMFC.
Figure 6: 'Activated water' brings the fuel-cell and battery communities closer.

References

  1. 1

    Schlapbach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Schlapbach, L. Global Research Center for Environment and Energy Based on Nanomaterials Science (National Institute for Materials Science, 2013).

    Google Scholar 

  3. 3

    Kinoshita, D. K. Electrochemical Oxygen Technology (Wiley, 1992).

    Google Scholar 

  4. 4

    Dresselhaus, M. S. & Thomas, I. L. Alternative energy technologies. Nature 414, 332–337 (2001).

    CAS  Google Scholar 

  5. 5

    Gratzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    CAS  Google Scholar 

  6. 6

    Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Google Scholar 

  7. 7

    Steele, B. C. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    CAS  Google Scholar 

  8. 8

    Tarasevich, M. R., Sadkowski, A. & Yeager, E. in Comprehensive Treatise of Electrochemistry Vol. 7 (Conway, B. E., Bockris, J. O., Yeager, E., Khan, S. U. M. & White, R. E.) 301–398 (Springer, 1983).

    Google Scholar 

  9. 9

    Adzic, R. R. Reaction Kinetics and Mechanisms on Metal Single-Crystal Electrode Surfaces (Plenum, 1990).

    Google Scholar 

  10. 10

    Markovic, N. M. & Ross, P. N. New electrocatalysts for fuel cells from model surfaces to commercial catalysts. CATTECH 4, 110–126 (2000).

    CAS  Google Scholar 

  11. 11

    Markovic, N. M. & Ross Jr., P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–229 (2002).

    CAS  Google Scholar 

  12. 12

    Koper, M. T. M. Electrocatalysis: Theory and experiment at the interface. Faraday Discuss. 140, 11–24 (2008).

    CAS  Google Scholar 

  13. 13

    Greeley, J. & Markovic, N. M. The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ. Sci. 5, 9246–9256 (2012).

    CAS  Google Scholar 

  14. 14

    Markovic, N. M. Electrocatalysis: Interfacing electrochemistry. Nat. Mater. 12, 101–102 (2013).

    CAS  Google Scholar 

  15. 15

    Müller-Dethlefs, K. & Hobza, P. Noncovalent interactions: A challenge for experiment and theory. Chem. Rev. 100, 143–167 (2000).

    Google Scholar 

  16. 16

    Strmcnik, D. et al. The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum. Nat. Chem. 1, 466–472 (2009).

    CAS  Google Scholar 

  17. 17

    Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010).

    CAS  Google Scholar 

  18. 18

    Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).

    CAS  Google Scholar 

  19. 19

    Kordesch, K. Hydrogen–oxygen fuel cells with carbon electrodes. Ind. Eng. Chem. 52, 296–298 (1960).

    CAS  Google Scholar 

  20. 20

    Bacon, F. T. The high pressure hydrogen–oxygen fuel cell. Ind. Eng. Chem. 52, 301–303 (1960).

    CAS  Google Scholar 

  21. 21

    Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 56, 9–35 (2005).

    CAS  Google Scholar 

  22. 22

    Koper, M. T. M. Fuel Cell Catalysis: A Surface Science Approach (Wiley, 2009).

    Google Scholar 

  23. 23

    Vielstich, W., Lamm, A., Gasteiger, H. A. & Yokokawa, H. Handbook of Fuel Cells (Wiley, 2009).

    Google Scholar 

  24. 24

    Gasteiger, H. A. & Markovic, N. M. Just a dream — or future reality? Science 324, 48–49 (2009).

    CAS  Google Scholar 

  25. 25

    Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486, 43–51 (2012).

    CAS  Google Scholar 

  26. 26

    Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    CAS  Google Scholar 

  27. 27

    Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012).

    CAS  Google Scholar 

  28. 28

    Schalenbach, M., Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. Pressurized PEM water electrolysis: Efficiency and gas crossover. Int. J. Hydrogen Energy 38, 14921–14933 (2013).

    CAS  Google Scholar 

  29. 29

    Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013).

    CAS  Google Scholar 

  30. 30

    Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. Rev 104, 4271–4301 (2004).

    CAS  Google Scholar 

  31. 31

    Goodenough, J. B. Rechargeable batteries: Challenges old and new. J. Solid State Electrochem. 16, 2019–2029 (2012).

    CAS  Google Scholar 

  32. 32

    Goodenough, J. B. Energy storage in a sustainable modern society. Energy Environ. Sci. 7, 14–18 (2014).

    CAS  Google Scholar 

  33. 33

    Rosenman, A. et al. Review on Li–sulfur battery systems: An integral perspective. Adv. Energy Mater. 5, 1500212 (2015).

    Google Scholar 

  34. 34

    Wild, M. et al. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 8, 3477–3494 (2015).

    CAS  Google Scholar 

  35. 35

    Fotouhi, A., Auger, D. J., Propp, K., Longo, S. & Wild, M. A review on electric vehicle battery modelling: From lithium-ion toward lithium–sulphur. Renew. Sustain. Energy Rev. 56, 1008–1021 (2016).

    CAS  Google Scholar 

  36. 36

    Abraham, K. M. & Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996).

    CAS  Google Scholar 

  37. 37

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 172–172 (2011).

    Google Scholar 

  38. 38

    Luntz, A. C. & McCloskey, B. D. Nonaqueous Li–air batteries: a status report. Chem. Rev. 114, 11721–11750 (2014).

    CAS  Google Scholar 

  39. 39

    Younesi, R., Veith, G. M., Johansson, P., Edstrom, K. & Vegge, T. Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy Environ. Sci. 8, 1905–1922 (2015).

    CAS  Google Scholar 

  40. 40

    Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).

    CAS  Google Scholar 

  41. 41

    Pickard, W. F., Shen, A. Q. & Hansing, N. J. Parking the power: Strategies and physical limitations for bulk energy storage in supply-demand matching on a grid whose input power is provided by intermittent sources. Renew. Sustain. Energy Rev. 13, 1934–1945 (2009).

    Google Scholar 

  42. 42

    Abdin, Z., Webb, C. J. & Gray, E. M. Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review. Renew. Sustain. Energy Rev. 52, 1791–1808 (2015).

    Google Scholar 

  43. 43

    Moorhouse, J. Modern Chlor-Alkali Technology. (Wiley, 2001).

    Google Scholar 

  44. 44

    O'Brien, T., Bommaraju, T. V. & Hine, F. Handbook of Chlor-Alkali Technology Vol. 4. (Kluwer Academic/Plenum, 2005).

    Google Scholar 

  45. 45

    Kordesch, K. et al. Alkaline fuel cells applications. J. Power Sources 86, 162–165 (2000).

    CAS  Google Scholar 

  46. 46

    Borup, R. et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 107, 3904–3951 (2007).

    CAS  Google Scholar 

  47. 47

    Wang, Y., Chen, K. S., Mishler, J., Cho, S. C. & Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Appl. Energy 88, 981–1007 (2011).

    CAS  Google Scholar 

  48. 48

    Hickner, M. A., Herring, A. M. & Coughlin, E. B. Anion exchange membranes: Current status and moving forward. J. Polym. Sci. B 51, 1727–1735 (2013).

    CAS  Google Scholar 

  49. 49

    Varcoe, J. R. et al. Anion-exchange membranes in electrochemical energy systems. Energy Environ. Sci. 7, 3135–3191 (2014).

    CAS  Google Scholar 

  50. 50

    Zhang, H. W., Chen, D. Z., Xianze, Y. & Yin, S. B. Anion-exchange membranes for fuel cells: Synthesis strategies, properties and perspectives. Fuel Cells 15, 761–780 (2015).

    CAS  Google Scholar 

  51. 51

    He, Q. & Cairns, E. J. Review: Recent progress in electrocatalysts for oxygen reduction suitable for alkaline anion exchange membrane fuel cells. J. Electrochem. Soc. 162, F1504–F1539 (2015).

    CAS  Google Scholar 

  52. 52

    Wagner, F. T., Lakshmanan, B. & Mathias, M. F. Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204–2219 (2010).

    CAS  Google Scholar 

  53. 53

    Gröger, O., Gasteiger, H. A. & Suchsland, J.-P. Review: Electromobility: Batteries or fuel cells? J. Electrochem. Soc. 162, A2605–A2622 (2015).

    Google Scholar 

  54. 54

    Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Farad. Soc. 54, 1053–1063 (1958).

    CAS  Google Scholar 

  55. 55

    Gerischer, H. Mechanism of electrolytic discharge of hydrogen and adsorption energy of atomic hydrogen. Bull. Soc. Chim. Belg. 67, 506 (1958).

    CAS  Google Scholar 

  56. 56

    Bockris, J. & Otagawa, T. Mechanism of oxygen evolution on perovskites. J. Phys. Chem. 87, 2960–2971 (1983).

    CAS  Google Scholar 

  57. 57

    Trasatti, S. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochim. Acta 29, 1503–1512 (1984).

    CAS  Google Scholar 

  58. 58

    Rossmeisl, J., Logadottir, A. & Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184 (2005).

    CAS  Google Scholar 

  59. 59

    Norskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    CAS  Google Scholar 

  60. 60

    Santos, E., Quaino, P. & Schmickler, W. Theory of electrocatalysis: Hydrogen evolution and more. Phys. Chem. Chem. Phys. 14, 11224–33 (2012).

    CAS  Google Scholar 

  61. 61

    Trasatti, S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J. Electroanal. Chem. Interfacial Electrochem. 39, 163–184 (1972).

    CAS  Google Scholar 

  62. 62

    Conway, B. E. & Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002).

    CAS  Google Scholar 

  63. 63

    Birry, L. & Lasia, A. Studies of the hydrogen evolution reaction on Raney nickel–molybdenum electrodes. J. Appl. Electrochem. 34, 735–749 (2004).

    CAS  Google Scholar 

  64. 64

    Danilovic, N. et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem. Int. Ed. 51, 12495–12498 (2012).

    CAS  Google Scholar 

  65. 65

    Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    CAS  Google Scholar 

  66. 66

    McCrory, C. C. L. et al. Benchmarking HER and OER electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    CAS  Google Scholar 

  67. 67

    Greeley, J. et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

    CAS  Google Scholar 

  68. 68

    Cabán-Acevedo, M. et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat. Mater. 14, 1245–51 (2015).

    Google Scholar 

  69. 69

    Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  Google Scholar 

  70. 70

    Kibsgaard, J., Chen, Z., Reinecke, B. N. & Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012).

    CAS  Google Scholar 

  71. 71

    Kibsgaard, J., Jaramillo, T. F. & Besenbacher, F. Building an appropriate active-site motif into a hydrogen-evolution catalyst with thiomolybdate [Mo3S13]2− clusters. Nat. Chem. 6, 248–253 (2014).

    CAS  Google Scholar 

  72. 72

    Faber, M. S. et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J. Am. Chem. Soc. 136, 10053–10061 (2014).

    CAS  Google Scholar 

  73. 73

    Faber, M. S. & Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 7, 3519–3542 (2014).

    CAS  Google Scholar 

  74. 74

    Li, H. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48–53 (2015).

    Google Scholar 

  75. 75

    Staszak-Jirkovský, J. et al. Design of active and stable Co–Mo–Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction. Nat. Mater. 15, 197–204 (2015).

    Google Scholar 

  76. 76

    Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256–60 (2011).

    CAS  Google Scholar 

  77. 77

    Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–7 (2012).

    CAS  Google Scholar 

  78. 78

    Petrii, O. A. & Tsirlina, G. A. Electrocatalytic activity prediction for hydrogen electrode reaction: intuition, art, science. Electrochim. Acta 39, 1739–1747 (1994).

    CAS  Google Scholar 

  79. 79

    Quaino, P., Juarez, F., Santos, E. & Schmickler, W. Volcano plots in hydrogen electrocatalysis — uses and abuses. Beilstein J. Nanotechnol. 5, 846–854 (2014).

    CAS  Google Scholar 

  80. 80

    Markovic, N. M., Sarraf, S. T., Gasteigert, H. A. & Ross, P. N. Hydrogen electrochemsitry on platinum low-index single crystal surfaces in alkaline solution. J. Chem. Soc. Faraday Trans. 92, 3719–3725 (1996).

    CAS  Google Scholar 

  81. 81

    Marković, N. M., Grgur, B. N. & Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 101, 5405–5413 (1997).

    Google Scholar 

  82. 82

    Sheng, W., Gasteiger, H. A. & Shao-Horn, Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electrochem. Soc. 157, B1529–B1536 (2010).

    CAS  Google Scholar 

  83. 83

    Strmcnik, D., Lopes, P. P., Genorio, B., Stamenkovic, V. R. & Markovic, N. M. Design principles for hydrogen evolution reaction catalyst materials. Nano Energy http://dx.doi.org/10.1016/j.nanoen.2016.04.017 (2016).

  84. 84

    Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science 334, 1256–1260 (2011).

    CAS  Google Scholar 

  85. 85

    Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002).

    CAS  Google Scholar 

  86. 86

    Bligaard, T. et al. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 224, 206–217 (2004).

    CAS  Google Scholar 

  87. 87

    Surendranath, Y. & Nocera, D. G. in Progress in Inorganic Chemistry Vol. 57, 505–560 (2011).

    Google Scholar 

  88. 88

    Danilovic, N. et al. Using surface segregation to design stable Ru–Ir oxides for the oxygen evolution reaction in acidic environments. Angew. Chem. Int. Ed. 53, 14016–14021 (2014).

    CAS  Google Scholar 

  89. 89

    Fabbri, E. et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 4, 3800–3821 (2014).

    CAS  Google Scholar 

  90. 90

    Jiao, Y., Zheng, Y., Jaroniec, M. & Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 44, 2060–2086 (2015).

    CAS  Google Scholar 

  91. 91

    Matsumoto, Y. & Sato, E. Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater. Chem. Phys. 14, 397–426 (1986).

    CAS  Google Scholar 

  92. 92

    Singh, N. K., Tiwari, S. K., Anitha, K. L. & Singh, R. N. Electrocatalytic properties of spinel-type Mn(x)Fe(3–x)O4 synthesized below 100 °C for oxygen evolution in KOH solutions. J. Chem. Soc. Farad. Trans. 92, 2397–2400 (1996).

    CAS  Google Scholar 

  93. 93

    Nikolov, I. et al. Electrocatalytic activity of spinel related cobalties MxCo3−xO4 (M = Li, Ni, Cu) in the oxygen evolution reaction. J. Electroanal. Chem. 429, 157–168 (1997).

    CAS  Google Scholar 

  94. 94

    Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).

    CAS  Google Scholar 

  95. 95

    Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    CAS  Google Scholar 

  96. 96

    Singh, R. N., Pandey, J. P., Singh, N. K., Lal, B. & Chartier, P. Sol-gel derived spinel MxCo3−xO4 (M = Ni, Cu; 0< x < 1) films and oxygen evolution. Electrochim. Acta 45, 1911–1919 (2000).

    CAS  Google Scholar 

  97. 97

    Forgie, R., Bugosh, G., Neyerlin, K. C., Liu, Z. & Strasser, P. Bimetallic Ru electrocatalysts for the OER and electrolytic water splitting in acidic media. Electrochem. Solid-State Lett. 13, B36–B39 (2010).

    CAS  Google Scholar 

  98. 98

    Suntivich, J., May, K. J., Gasteiger, H. a, Goodenough, J. B. & Shao-horn, Y. A perovskite oxide optimized for molecular orbital principles. Science 334, 2010–2012 (2011).

    Google Scholar 

  99. 99

    Chang, S. H. et al. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nat. Commun. 5, 4191 (2014).

    CAS  Google Scholar 

  100. 100

    Danilovic, N. et al. Activity–stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 5, 2474–2478 (2014).

    CAS  Google Scholar 

  101. 101

    Cherevko, S. et al. Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6, 2219–2223 (2014).

    CAS  Google Scholar 

  102. 102

    Chang, S. H. et al. Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discuss. 176, 125–133 (2015).

    Google Scholar 

  103. 103

    Binninger, T. et al. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 5, 12167 (2015).

    CAS  Google Scholar 

  104. 104

    Lopes, P. P. et al. Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments. ACS Catal. 6, 2536–2544 (2016).

    CAS  Google Scholar 

  105. 105

    Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Google Scholar 

  106. 106

    Stamenkovic, V. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chemie Int. Ed. 45, 2897–2901 (2006).

    CAS  Google Scholar 

  107. 107

    Adzic, R. R. et al. Platinum monolayer fuel cell electrocatalysts. Top. Catal. 46, 249–262 (2007).

    CAS  Google Scholar 

  108. 108

    Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 1, 552–556 (2009).

    CAS  Google Scholar 

  109. 109

    Calle-Vallejo, F. et al. Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science 350, 185–189 (2015).

    CAS  Google Scholar 

  110. 110

    Bashyam, R. & Zelenay, P. A class of non-precious metal composite catalysts for fuel cells. Nature 443, 63–66 (2006).

    CAS  Google Scholar 

  111. 111

    Lefèvre, M., Proietti, E., Jaouen, F. & Dodelet, J.-P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324, 71–74 (2009).

    Google Scholar 

  112. 112

    Jaouen, F. et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4, 114 (2011).

    CAS  Google Scholar 

  113. 113

    Shao, M., Chang, Q., Dodelet, J. & Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116, 3594–3657 (2016).

    CAS  Google Scholar 

  114. 114

    Auinger, M. et al. Near-surface ion distribution and buffer effects during electrochemical reactions. Phys. Chem. Chem. Phys. 13, 16384–16394 (2011).

    CAS  Google Scholar 

  115. 115

    Durst, J. et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

    CAS  Google Scholar 

  116. 116

    Rossmeisl, J., Chan, K., Skúlason, E., Björketun, M. E. & Tripkovic, V. On the pH dependence of electrochemical proton transfer barriers. Catal. Today 262, 36–40 (2016).

    CAS  Google Scholar 

  117. 117

    Watanabe, M. & Motoo, S. Electrocatalysis by ad-atoms. Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J. Electroanal. Chem. Interfacial Electrochem. 61, 147–153 (1975).

    Google Scholar 

  118. 118

    Gasteiger, H. A., Markovic, N., Ross, P. N. & Cairns, E. J. Methanol electrooxidation on well-characterized Pt–Ru alloys. J. Phys. Chem. 97, 12020–12029 (1993).

    CAS  Google Scholar 

  119. 119

    Gasteiger, H. A., Markovic, N. M. & Ross, P. N. H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J. Phys. Chem. 99, 8290–8301 (1995).

    CAS  Google Scholar 

  120. 120

    Marković, N. M., Schmidt, T. J., Stamenković, V. & Ross, P. N. Oxygen reduction reaction on Pt and Pt bimetallic surfaces: A selective review. Fuel Cells 1, 105–116 (2001).

    Google Scholar 

  121. 121

    Paulus, U. A. et al. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim. Acta 47, 3787–3798 (2002).

    CAS  Google Scholar 

  122. 122

    Paulus, U. A. et al. Oxygen reduction on carbon-supported Pt–Ni and Pt–Co alloy catalysts. J. Phys. Chem. B 106, 4181–4191 (2002).

    CAS  Google Scholar 

  123. 123

    Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–7 (2007).

    CAS  Google Scholar 

  124. 124

    Srivastava, R., Mani, P., Hahn, N. & Strasser, P. Efficient oxygen reduction fuel cell electrocatalysis on voltammetrically dealloyed Pt–Cu–Co nanoparticles. Angew. Chem. Int. Ed. 46, 8988–8991 (2007).

    Google Scholar 

  125. 125

    Zhang, J., Vukmirovic, M. B., Xu, Y., Mavrikakis, M. & Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Ed. 44, 2132–2135 (2005).

    CAS  Google Scholar 

  126. 126

    Yang, L. et al. Tuning the catalytic activity of Ru@Pt core−shell nanoparticles for the oxygen reduction reaction by varying the shell thickness. J. Phys. Chem. C 117, 1748–1753 (2013).

    CAS  Google Scholar 

  127. 127

    Li, D. et al. Functional links between Pt single crystal morphology and nanoparticles with di ff erent size and shape: The oxygen reduction reaction case. Energy Environ. Sci. 7, 4061–4069 (2014).

    CAS  Google Scholar 

  128. 128

    Huang, X. et al. High-performance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction. Science 348, 1230–1234 (2014).

    Google Scholar 

  129. 129

    Stamenkovic, V. R. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 6, 241–247 (2007).

    CAS  Google Scholar 

  130. 130

    van der Vliet, D. F. et al. Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chemie Int. Ed. 51, 3139–3142 (2012).

    CAS  Google Scholar 

  131. 131

    Arenz, M., Schmidt, T. J., Wandelt, K., Ross, P. N. & Markovic, N. M. The oxygen reduction reaction on thin palladium films supported on a Pt(111) electrode. J. Phys. Chem. B 107, 9813–9819 (2003).

    CAS  Google Scholar 

  132. 132

    van der Vliet, D. F. et al. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nat. Mater. 11, 1051–1058 (2012).

    CAS  Google Scholar 

  133. 133

    Wang, C. et al. Monodisperse Pt(3)Co nanoparticles as electrocatalyst: The effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys. Chem. Chem. Phys. 12, 6933–6939 (2010).

    CAS  Google Scholar 

  134. 134

    Wang, C. et al. Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett. 11, 919–926 (2011).

    CAS  Google Scholar 

  135. 135

    Kang, Y. et al. Multimetallic core/interlayer/shell nanostructures as advanced electrocatalysts. Nano Lett. 14, 6361–6367 (2014).

    CAS  Google Scholar 

  136. 136

    Wang, C. et al. Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1-x nanoparticles. Adv. Funct. Mater. 21, 147–152 (2011).

    Google Scholar 

  137. 137

    Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    CAS  Google Scholar 

  138. 138

    Yoshida, T. & Kojima, K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Interface 24, 45–49 (2015).

    CAS  Google Scholar 

  139. 139

    Zurilla, R. W., Sen, R. K. & Yeager, E. The kinetics of the oxygen reduction reaction on gold in alkaline solution. J. Electrochem. Soc. 125, 1103–1109 (1978).

    CAS  Google Scholar 

  140. 140

    Adzić, R. R., Marković, N. M. & Vešović, V. B. Structural effects in electrocatalysis: Oxygen reduction on the Au(100) single crystal electrode. J. Electroanal. Chem. Interfacial Electrochem. 165, 105–120 (1984).

    Google Scholar 

  141. 141

    Adžić, R. R., Strbac, S. & Anastasijević, N. Electrocatalysis of oxygen on single crystal gold electrodes. Mater. Chem. Phys. 22, 349–375 (1989).

    Google Scholar 

  142. 142

    Sawyer, D. T. & Roberts, J. L. Electrochemistry of oxygen and superoxide ion in dimethylsulfoxide at platinum, gold and mercury electrodes. J. Electroanal. Chem. 12, 90–101 (1966).

    CAS  Google Scholar 

  143. 143

    Staszak-Jirkovský, J. et al. Water as a promoter and catalyst for dioxygen electrochemistry in aqueous and organic media. ACS Catal. 5, 6600–6607 (2015).

    Google Scholar 

  144. 144

    Genorio, B. et al. Superoxide (electro)chemistry on well-defined surfaces in organic environments. J. Phys. Chem. C http://dx.doi.org/10.1021/acs.jpcc.5b12230 (2016).

  145. 145

    Shterenberg, I. et al. Evaluation of (CF3SO2)2N (TFSI) based electrolyte solutions for Mg batteries. J. Electrochem. Soc. 162, 7118–7128 (2015).

    Google Scholar 

  146. 146

    Tepavcevic, S. et al. Nanostructured layered cathode for rechargeable Mg-ion batteries. ACS Nano 9, 8194–8205 (2015).

    CAS  Google Scholar 

  147. 147

    Strmcnik, D. et al. When small is big: The role of impurities in electrocatalysis. Top. Catal. 58, 1174–1180 (2015).

    CAS  Google Scholar 

  148. 148

    Lamy, C. et al. Recent advances in the development of direct alcohol fuel cells (DAFC). J. Power Sources 105, 283–296 (2002).

    CAS  Google Scholar 

  149. 149

    Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. A step closer to the electrochemical production of liquid fuels. Angew. Chem. Int. Ed. Engl. 53, 10858–10860 (2014).

    CAS  Google Scholar 

  150. 150

    Rosca, V., Duca, M., DeGroot, M. T. & Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 109, 2209–2244 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

The research was conducted at Argonne National Laboratory, a US Department of Energy Office of Science laboratory, operated by UChicago Argonne, LLC, under contract no. DE-AC02-06CH11357. We acknowledge support from the Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, the Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Program and from the Joint Center of Energy Storage Research (JCESR), an Energy Innovation Hub funded by the US Department of Energy.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nenad M. Markovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stamenkovic, V., Strmcnik, D., Lopes, P. et al. Energy and fuels from electrochemical interfaces. Nature Mater 16, 57–69 (2017). https://doi.org/10.1038/nmat4738

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing