Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering

Abstract

Most bacteria in nature exist as biofilms, which support intercellular signalling processes such as quorum sensing (QS), a cell-to-cell communication mechanism that allows bacteria to monitor and respond to cell density and changes in the environment. As QS and biofilms are involved in the ability of bacteria to cause disease, there is a need for the development of methods for the non-invasive analysis of QS in natural bacterial populations. Here, by using surface-enhanced resonance Raman scattering spectroscopy, we report rationally designed nanostructured plasmonic substrates for the in situ, label-free detection of a QS signalling metabolite in growing Pseudomonas aeruginosa biofilms and microcolonies. The in situ, non-invasive plasmonic imaging of QS in biofilms provides a powerful analytical approach for studying intercellular communication on the basis of secreted molecules as signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of nanostructured porous substrates for in situ plasmonic detection and imaging of QS in Pseudomonas aeruginosa biofilms.
Figure 2: Raman and SERRS spectra of pyocyanin.
Figure 3: SERRS analysis of phenazine production by P. aeruginosa PA14 strains grown in planktonic cultures, recorded with Au@pNIPAM hydrogels.
Figure 4: In situ detection of pyocyanin secreted by P. aeruginosa PA14 colony-biofilms grown on Au@pNIPAM hydrogels.
Figure 5: In situ detection and imaging of pyocyanin produced by P. aeruginosa PA14 biofilms grown on mesostructured Au@TiO2 thin films.
Figure 6: In situ detection and imaging of pyocyanin produced by P. aeruginosa PA14 grown on micropatterned Au@SiO2 substrates.

Similar content being viewed by others

References

  1. Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).

    CAS  Google Scholar 

  2. Lazdunski, A. M., Ventre, I. & Sturgis, J. N. Regulatory circuits and communication in gram-negative bacteria. Nature Rev. Microbiol. 2, 581–592 (2004).

    CAS  Google Scholar 

  3. Rutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2, a012427 (2012).

    Google Scholar 

  4. LaSarre, B. & Federle, M. J. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev. 77, 73–111 (2013).

    CAS  Google Scholar 

  5. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95–108 (2004).

    CAS  Google Scholar 

  6. Davey, M. E. & O’toole, G. A. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64, 847–867 (2000).

    CAS  Google Scholar 

  7. Li, Y. H. & Tian, X. L. Quorum sensing and bacterial social interactions in biofilms. Sensors 12, 2519–2538 (2012).

    CAS  Google Scholar 

  8. Parsek, M. R. & Greenberg, E. P. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13, 27–33 (2005).

    CAS  Google Scholar 

  9. Rybtke, M., Hultqvist, L. D., Givskov, M. & Tolker-Nielsen, T. Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. J. Mol. Biol. 427, 3628–3645 (2015).

    CAS  Google Scholar 

  10. Jimenez, P. N. et al. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol. Mol. Biol. Rev. 76, 46–65 (2012).

    CAS  Google Scholar 

  11. Castillo-Juarez, I. et al. Role of quorum sensing in bacterial infections. World J. Clin. Cases 3, 575–598 (2015).

    Google Scholar 

  12. Decho, A. W., Norman, R. S. & Visscher, P. T. Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol. 18, 73–80 (2010).

    CAS  Google Scholar 

  13. Steindler, L. & Venturi, V. Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiol. Lett. 266, 1–9 (2007).

    CAS  Google Scholar 

  14. Jansson, J. K. Marker and reporter genes: illuminating tools for environmental microbiologists. Curr. Opin. Microbiol. 6, 310–316 (2003).

    CAS  Google Scholar 

  15. Moskovits, M. Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005).

    CAS  Google Scholar 

  16. Stiles, P. L., Dieringer, J. A., Shah, N. C. & Van Duyne, R. R. Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008).

    CAS  Google Scholar 

  17. Schlucker, S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756–4795 (2014).

    Google Scholar 

  18. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    CAS  Google Scholar 

  19. Bantz, K. C. et al. Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. 13, 11551–11567 (2011).

    Google Scholar 

  20. Abalde-Cela, S. et al. Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. J. R. Soc. Interface 7, S435–S450 (2010).

    CAS  Google Scholar 

  21. Alvarez-Puebla, R. A. & Liz-Marzan, L. M. SERS-based diagnosis and biodetection. Small 6, 604–610 (2010).

    CAS  Google Scholar 

  22. Howes, P. D., Chandrawati, R. & Stevens, M. M. Colloidal nanoparticles as advanced biological sensors. Science 346, 1247390 (2014).

    Google Scholar 

  23. Zeng, S. W., Baillargeat, D., Ho, H. P. & Yong, K. T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 43, 3426–3452 (2014).

    CAS  Google Scholar 

  24. Pierson, L. S. & Pierson, E. A. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl. Microbiol. Biotechnol. 86, 1659–1670 (2010).

    CAS  Google Scholar 

  25. Mavrodi, D. V. et al. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183, 6454–6465 (2001).

    CAS  Google Scholar 

  26. Dietrich, L. E. P. et al. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol. Microbiol. 61, 1308–1321 (2006).

    CAS  Google Scholar 

  27. Dietrich, L. E. P., Teal, T. K., Price-Whelan, A. & Newman, D. K. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321, 1203–1206 (2008).

    CAS  Google Scholar 

  28. Ramos, I., Dietrich, L. E. P., Price-Whelan, A. & Newman, D. K. Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res. Microbiol. 161, 187–191 (2010).

    CAS  Google Scholar 

  29. Dietrich, L. E. P. et al. Bacterial community morphogenesis is intimately linked to the intracellular redox state. J. Bacteriol. 195, 1371–1380 (2013).

    CAS  Google Scholar 

  30. Price-Whelan, A., Dietrich, L. E. & Newman, D. K. Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nature Chem. Biol. 2, 71–78 (2006).

    CAS  Google Scholar 

  31. Lee, J. & Zhang, L. H. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6, 26–41 (2015).

    CAS  Google Scholar 

  32. Wu, X. M. et al. Culture-free diagnostics of Pseudomonas aeruginosa infection by silver nanorod array based SERS from clinical sputum samples. Nanomedicine 10, 1863–1870 (2014).

    CAS  Google Scholar 

  33. Lopez-Puente, V. et al. Plasmonic mesoporous composites as molecular sieves for SERS detection. J. Phys. Chem. Lett. 4, 2715–2720 (2013).

    CAS  Google Scholar 

  34. Yang, S., Dai, X., Boschitsch Stogin, B. & Wong, T. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl Acad. Sci. USA 113, 268–273 (2015).

    Google Scholar 

  35. Hamon, C. et al. Hierarchical self-assembly of gold nanoparticles into patterned plasmonic nanostructures. ACS Nano 8, 10694–10703 (2014).

    CAS  Google Scholar 

  36. Reszka, K. J. et al. Oxidation of pyocyanin, a cytotoxic product from Pseudomonas aeruginosa, by microperoxidase 11 and hydrogen peroxide. Free Radic. Biol. Med. 36, 1448–1459 (2004).

    CAS  Google Scholar 

  37. Lebeaux, D., Chauhan, A., Rendueles, O. & Beloin, C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2, 288–356 (2013).

    Google Scholar 

  38. Coenye, T. & Nelis, H. J. In vitro and in vivo model systems to study microbial biofilm formation. J. Microbiol. Methods 83, 89–105 (2010).

    CAS  Google Scholar 

  39. Koley, D., Ramsey, M. M., Bard, A. J. & Whiteley, M. Discovery of a biofilm electrocline using real-time 3D metabolite analysis. Proc. Natl Acad. Sci. USA 108, 19996–20001 (2011).

    CAS  Google Scholar 

  40. Bellin, D. L. et al. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nature Commun. 5, 3256 (2014).

    Google Scholar 

  41. Pedersen, S. S., Shand, G. H., Hansen, B. L. & Hansen, G. N. Induction of experimental chronic Pseudomonas-aeruginosa lung infection with Pseudomonas-aeruginosa entrapped in alginate microspheres. APMIS 98, 203–211 (1990).

    CAS  Google Scholar 

  42. Leevy, W. M., Serazin, N. & Smith, B. D. Optical imaging of bacterial infection models. Drug Discov. Today Dis. Models 4, 91–97 (2007).

    Google Scholar 

  43. Hunter, R. C. et al. Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. Am. J. Respir. Cell Mol. Biol. 47, 738–745 (2012).

    CAS  Google Scholar 

  44. Reuter, K., Steinbach, A. & Helms, V. Interfering with bacterial quorum sensing. Perspect. Medicin. Chem. 8, 1–15 (2016).

    Google Scholar 

  45. O’Loughlin, C. T. et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl Acad. Sci. USA 110, 17981–17986 (2013).

    Google Scholar 

  46. Welsh, M. A., Eibergen, N. R., Moore, J. D. & Blackwell, H. E. Small molecule disruption of quorum sensing cross-regulation in Pseudomonas aeruginosa causes major and unexpected alterations to virulence phenotypes. J. Am. Chem. Soc. 137, 1510–1519 (2015).

    CAS  Google Scholar 

  47. Dai, T. H. et al. Animal models of external traumatic wound infections. Virulence 2, 296–315 (2011).

    Google Scholar 

  48. Wessel, A. K., Hmelo, L., Parsek, M. R. & Whiteley, M. Going local: technologies for exploring bacterial microenvironments. Nature Rev. Microbiol. 11, 337–348 (2013).

    CAS  Google Scholar 

  49. Connell, J. L. et al. Real-time monitoring of quorum sensing in 3D-printed bacterial aggregates using scanning electrochemical microscopy. Proc. Natl Acad. Sci. USA 111, 18255–18260 (2014).

    CAS  Google Scholar 

  50. Buenger, D., Topuz, F. & Groll, J. Hydrogels in sensing applications. Prog. Polym. Sci. 37, 1678–1719 (2012).

    CAS  Google Scholar 

  51. Weibel, D. B., DiLuzio, W. R. & Whitesides, G. M. Microfabrication meets microbiology. Nature Rev. Microbiol. 5, 209–218 (2007).

    CAS  Google Scholar 

  52. Tian, L. et al. Plasmonic biofoam: a versatile optically active material. Nano Lett. 16, 609–616 (2016).

    CAS  Google Scholar 

  53. Hamon, C. et al. Hierarchical organization and molecular diffusion in gold nanorod/silica supercrystal nanocomposites. Nanoscale 8, 7914–7922 (2016).

    CAS  Google Scholar 

  54. Falconnet, D., Csucs, G., Grandin, H. M. & Textor, M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 27, 3044–3063 (2006).

    CAS  Google Scholar 

  55. Shao, Y. & Fu, J. P. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. Adv. Mater. 26, 1494–1533 (2014).

    CAS  Google Scholar 

  56. Mitragotri, S. & Lahann, J. Physical approaches to biomaterial design. Nature Mater. 8, 15–23 (2009).

    CAS  Google Scholar 

  57. Watrous, J. D. & Dorrestein, P. C. Imaging mass spectrometry in microbiology. Nature Rev. Microbiol. 9, 683–694 (2011).

    CAS  Google Scholar 

  58. Fang, J. S. & Dorrestein, P. C. Emerging mass spectrometry techniques for the direct analysis of microbial colonies. Curr. Opin. Microbiol. 19, 120–129 (2014).

    CAS  Google Scholar 

  59. Wang, C., Flynn, N. T. & Langer, R. Controlled structure and properties of thermoresponsive nanoparticle–hydrogel composites. Adv. Mater. 16, 1074–1079 (2004).

    CAS  Google Scholar 

  60. Scarabelli, L., Grzelczak, M. & Liz-Marzan, L. M. Tuning gold nanorod synthesis through prereduction with salicylic acid. Chem. Mater. 25, 4232–4238 (2013).

    CAS  Google Scholar 

  61. Crepaldi, E. L. et al. Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2 . J. Am. Chem. Soc. 125, 9770–9786 (2003).

    CAS  Google Scholar 

  62. Dong Qin, Y. X. & Whitesides, G. M. Soft lithography for micro- and nanoscale patterning. Nature Protoc. 5, 491–502 (2010).

    Google Scholar 

  63. McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).

    CAS  Google Scholar 

  64. Alvarez-Puebla, R. A. et al. Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew. Chem. Int. Ed. 48, 138–143 (2009).

    CAS  Google Scholar 

  65. Kern, S. E. & Newman, D. K. Measurement of phenazines in bacterial cultures. Methods Mol. Biol. 1149, 303–310 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by the European Research Council (ERC Advanced Grant no. 267867 Plasmaquo). We thank D. K. Newman, Department of Biology, California Institute of Technology and Howard Hughes Medical Institute for providing us with P. aeruginosa PA14 and PA14 Δphz1/2 strains. We thank F. M. Ausubel, Department of Genetics, Harvard Medical School for providing P. aeruginosa PA14 phzH, phzM and phzS strains. E. Modin and A. Chuvilin are thanked for their work on FIB/SEM of supercrystals. E.H.H. gratefully acknowledges the Spanish Ministry of Economy and Competitiveness for funding a Juan de la Cierva Fellowship. V.M.-G. acknowledges an FPU scholarship from the Spanish MINECO.

Author information

Authors and Affiliations

Authors

Contributions

G.B. designed and executed bacterial growth experiments, V.M.-G. performed SERS experiments with Au@pNIPAM substrates, V.L.-P. fabricated Au@TiO2 substrates and measured SERS, C.C. executed bacterial growth experiments, S.R.-C. and S.C. participated in the fabrication of Au@pNIPAM substrates, I.P.-J. carried out DFT calculations, E.H.H. executed bacterial growth experiments and measured SERS on Au@SiO2 substrates, C.H., M.N.S.-O. and L.S. participated in the fabrication of Au@SiO2 substrates, A.L.P. carried out SEM imaging, I.P.-S. and J.P.-J. contributed to substrate design and discussion, L.M.L.-M. designed and supervised the project and the discussions. All authors participated in writing of the manuscript.

Corresponding authors

Correspondence to Gustavo Bodelón or Luis M. Liz-Marzán.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodelón, G., Montes-García, V., López-Puente, V. et al. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nature Mater 15, 1203–1211 (2016). https://doi.org/10.1038/nmat4720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4720

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology