Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach


Virtual screening is becoming a ground-breaking tool for molecular discovery due to the exponential growth of available computer time and constant improvement of simulation and machine learning techniques. We report an integrated organic functional material design process that incorporates theoretical insight, quantum chemistry, cheminformatics, machine learning, industrial expertise, organic synthesis, molecular characterization, device fabrication and optoelectronic testing. After exploring a search space of 1.6 million molecules and screening over 400,000 of them using time-dependent density functional theory, we identified thousands of promising novel organic light-emitting diode molecules across the visible spectrum. Our team collaboratively selected the best candidates from this set. The experimentally determined external quantum efficiencies for these synthesized candidates were as large as 22%.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Discovery pipeline.
Figure 2: Experiment–theory calibration.
Figure 3: Effectiveness of machine learning.
Figure 4: Candidate statistics and voting tool.
Figure 5: Lead candidates and optoelectronic characterization.


  1. 1

    Polishchuk, P. G., Madzhidov, T. I. & Varnek, A. Estimation of the size of drug-like chemical space based on GDB-17 data. J. Comput. Aided Mol. Des. 27, 675–679 (2013).

    CAS  Article  Google Scholar 

  2. 2

    Shoichet, B. K. Virtual screening of chemical libraries. Nature 432, 862–865 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Curtarolo, S. et al. The high-throughput highway to computational materials design. Nature Mater. 12, 191–201 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Pyzer-Knapp, E. O., Suh, C., Gómez-Bombarelli, R., Aguilera-Iparraguirre, J. & Aspuru-Guzik, A. What is high-throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Res. 45, 195–216 (2015).

    CAS  Article  Google Scholar 

  5. 5

    Yang, K., Setyawan, W., Wang, S., Buongiorno Nardelli, M. & Curtarolo, S. A search model for topological insulators with high-throughput robustness descriptors. Nature Mater. 11, 614–619 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Carrete, J., Li, W., Mingo, N., Wang, S. & Curtarolo, S. Finding unprecedentedly low-thermal-conductivity half-Heusler semiconductors via high-throughput materials modeling. Phys. Rev. X 4, 011019 (2014).

    Google Scholar 

  7. 7

    Huskinson, B. et al. A metal-free organic–inorganic aqueous flow battery. Nature 505, 195–198 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Er, S., Suh, C., Marshak, M. P. & Aspuru-Guzik, A. Computational design of molecules for an all-quinone redox flow battery. Chem. Sci. 6, 885–893 (2015).

    CAS  Article  Google Scholar 

  9. 9

    Hachmann, J. et al. The Harvard Clean Energy Project: large-scale computational screening and design of organic photovoltaics on the world community grid. J. Phys. Chem. Lett. 2, 2241–2251 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Shin, Y., Liu, J., Quigley, J. J., Luo, H. & Lin, X. Combinatorial design of copolymer donor materials for bulk heterojunction solar cells. ACS Nano 8, 6089–6096 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Hachmann, J. et al. Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry—the Harvard Clean Energy Project. Energy Environ. Sci. 7, 698–704 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Yersin, H. Transition Metal and Rare Earth Compounds 1–26 (Springer, 2004).

    Google Scholar 

  14. 14

    Jou, J.-H., Kumar, S., Agrawal, A., Li, T.-H. & Sahoo, S. Approaches for fabricating high efficiency organic light emitting diodes. J. Mater. Chem. C 3, 2974–3002 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Tao, Y. et al. Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Adv. Mater. 26, 7931–7958 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Endo, A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 083302 (2011).

    Article  Google Scholar 

  17. 17

    Zhang, Q. et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc. 134, 14706–14709 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Zhang, Q. et al. Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photon. 8, 326–332 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Yersin, H., Rausch, A. F., Czerwieniec, R., Hofbeck, T. & Fischer, T. The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coord. Chem. Rev. 255, 2622–2652 (2011).

    CAS  Article  Google Scholar 

  20. 20

    Dias, F. B. et al. Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters. Adv. Mater. 25, 3707–3714 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Jankus, V. et al. Highly efficient TADF OLEDs: How the emitter–host interaction controls both the excited state species and electrical properties of the devices to achieve near 100% triplet harvesting and high efficiency. Adv. Funct. Mater. 24, 6178–6186 (2014).

    CAS  Article  Google Scholar 

  22. 22

    Zhang, Q. et al. Nearly 100% internal quantum efficiency in undoped electroluminescent devices employing pure organic emitters. Adv. Mater. 27, 2096–2100 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Tanaka, H., Shizu, K., Lee, J. & Adachi, C. Effect of atom substitution in chalcogenodiazole-containing thermally activated delayed fluorescence emitters on radiationless transition. J. Phys. Chem. C 119, 2948–2955 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Lee, J. et al. Controlled emission colors and singlet–triplet energy gaps of dihydrophenazine-based thermally activated delayed fluorescence emitters. J. Mater. Chem. C 3, 2175–2181 (2015).

    CAS  Article  Google Scholar 

  25. 25

    Wang, H. et al. Novel thermally activated delayed fluorescence materials–thioxanthone derivatives and their applications for highly efficient OLEDs. Adv. Mater. 26, 5198–5204 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Lee, D. R., Hwang, S.-H., Jeon, S. K., Lee, C. W. & Lee, J. Y. Benzofurocarbazole and benzothienocarbazole as donors for improved quantum efficiency in blue thermally activated delayed fluorescent devices. Chem. Commun. 51, 8105–8107 (2015).

    CAS  Article  Google Scholar 

  27. 27

    Shizu, K. et al. Strategy for designing electron donors for thermally activated delayed fluorescence emitters. J. Phys. Chem. C 119, 1291–1297 (2015).

    CAS  Article  Google Scholar 

  28. 28

    Sagara, Y. et al. Highly efficient thermally activated delayed fluorescence emitters with a small singlet–triplet energy gap and large oscillator strength. Chem. Lett. 44, 360–362 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Shu, Y. & Levine, B. G. Simulated evolution of fluorophores for light emitting diodes. J. Chem. Phys. 142, 104104 (2015).

    Article  Google Scholar 

  30. 30

    Zhang, X. et al. Theoretical investigation of dihydroacridine and diphenylsulphone derivatives as thermally activated delayed fluorescence emitters for organic light-emitting diodes. RSC Adv. 5, 51586–51591 (2015).

    CAS  Article  Google Scholar 

  31. 31

    RDKit: open source cheminformatics software (accessed 23 June 2015).

  32. 32

    Ertl, P. & Schuffenhauer, A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 1, 8 (2009).

    Article  Google Scholar 

  33. 33

    Baleizão, C. & Berberan-Santos, M. N. Thermally activated delayed fluorescence as a cycling process between excited singlet and triplet states: application to the fullerenes. J. Chem. Phys. 126, 204510 (2007).

    Article  Google Scholar 

  34. 34

    Hilborn, R. C. Einstein coefficients, cross sections, f values, dipole moments, and all that. Am. J. Phys. 50, 982–986 (1982).

    CAS  Article  Google Scholar 

  35. 35

    Dreuw, A. & Head-Gordon, M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 105, 4009–4037 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Gritsenko, O. & Baerends, E. J. Asymptotic correction of the exchange–correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations. J. Chem. Phys. 121, 655–660 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Huang, S. et al. Computational prediction for singlet- and triplet-transition energies of charge-transfer compounds. J. Chem. Theory Comput. 9, 3872–3877 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Penfold, T. J. On predicting the excited-state properties of thermally activated delayed fluorescence emitters. J. Phys. Chem. C 119, 13535–13544 (2015).

    CAS  Article  Google Scholar 

  39. 39

    Moral, M., Muccioli, L., Son, W-J., Olivier, Y. & Sancho-García, J. C. Theoretical rationalization of the singlet–triplet gap in OLEDs materials: impact of charge-transfer character. J. Chem. Theory Comput. 11, 168–177 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Bergeron, C., Krein, M., Moore, G., Breneman, C. M. & Bennett, K. P. Modeling choices for virtual screening hit identification. Mol. Inform. 30, 765–777 (2011).

    CAS  Article  Google Scholar 

  41. 41

    Eckert, H. & Bajorath, J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov. Today 12, 225–233 (2007).

    CAS  Article  Google Scholar 

  42. 42

    Dahl, G. E., Jaitly, N. & Salakhutdinov, R. Multi-task neural networks for QSAR predictions. Preprint at (2014).

  43. 43

    Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

    CAS  Article  Google Scholar 

  44. 44

    Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. Proc. 27th International Conference on Machine Learning (ICML-10) 807–814 (2010).

    Google Scholar 

  45. 45

    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

    Google Scholar 

  46. 46

    Snoek, J., Larochelle, H. & Adams, R. P. Practical Bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 25, 2951–2959 (2012).

    Google Scholar 

  47. 47

    Maclaurin, D., Duvenaud, D. & Johnson, M. J. HIPS/autograd GitHub (accessed 29 October 2015).

  48. 48

    Hirata, S. et al. Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nature Mater. 14, 330–336 (2015).

    CAS  Article  Google Scholar 

  49. 49

    Tosco, P., Stiefl, N. & Landrum, G. Bringing the MMFF force field to the RDKit: implementation and validation. J. Cheminformat. 6, 37 (2014).

    Article  Google Scholar 

  50. 50

    Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).

    CAS  Article  Google Scholar 

  51. 51

    Ufimtsev, I. S. & Martinez, T. J. Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 5, 2619–2628 (2009).

    CAS  Article  Google Scholar 

Download references


The authors acknowledge Samsung Advanced Institute of Technology for funding and Lumtec Inc. for custom synthesis of candidate materials. The assistance of Samsung for synthesis and characterization of lead compounds is acknowledged. M.A.B.-F. acknowledges support from the DOE Office of Science Graduate Fellowship. M.E. and T.W. were supported by the US Department of Energy, Office of Basic Energy Sciences (Award No. DE-FG02-07ER46474). G.M. thanks the German Academic Exchange Service (DAAD) for a postdoctoral fellowship. The authors acknowledge the use of the Harvard FAS Odyssey Cluster and support from FAS Research Computing.

Author information




A.A.-G., M.B. and R.P.A. conceived the project. T.D.H. designed and wrote the custom computer code for molecular screening, with contributions from R.G.-B. and J.A.-I. R.G.-B. and J.A.-I. designed the molecules, with contributions from A.A.-G., H.M., M.N. and H.S.C. R.G.-B. and J.A.-I. performed calculations and analysed theoretical predictions. M.A.B.-F. carried out the experimental calibration of the theoretical methods. D.M., D.D. and R.P.A. applied machine learning to the computational predictions. H.S.C. and G.M. assessed synthetic feasibility of molecular candidates, with contributions from W.H., S.J., H.M., M.N. and S.K. R.G.-B., J.A.-I., T.D.H., H.S.C., M.A.B.-F., G.M., D.M., D.D., S.H., S.J., H.M., M.N., S.K., R.P.A., M.B. and A.A.-G. selected the molecules for characterization. S.J. synthesized J1-2 and L1. S.J., H.S.C., T.W., D.-G.H. and M.E. collected and analysed spectroscopic data. D.-G.H., M.E. and T.W. manufactured and tested devices for F1, J1, J2 and L1, with contributions from H.K. R.G.-B., J.A.-I. and T.D.H. wrote the first version of the manuscript. All authors contributed to the discussion, writing and editing of the manuscript. A.A.-G. and R.P.A. supervised the computational chemistry study. R.P.A. and A.A.-G. supervised the machine learning approach. M.B. supervised the device fabrication.

Corresponding author

Correspondence to Alán Aspuru-Guzik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 7524 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gómez-Bombarelli, R., Aguilera-Iparraguirre, J., Hirzel, T. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nature Mater 15, 1120–1127 (2016).

Download citation

Further reading