Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cooperative photoinduced metastable phase control in strained manganite films

Abstract

A major challenge in condensed-matter physics is active control of quantum phases1,2. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible3,4,5. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic–lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Strain engineered La2/3Ca1/3MnO3 (LCMO) thin film.
Figure 2: Photoinduced insulator-to-metal phase transition in strain-engineered thin film.
Figure 3: Pulse-to-pulse conductivity changes and single-shot dynamics.
Figure 4: Ginzburg–Landau free-energy phenomenology.

References

  1. 1

    Nasu, K. Photoinduced Phase Transitions (World Scientific, 2004).

    Book  Google Scholar 

  2. 2

    Zhang, J. & Averitt, R. D. Dynamics and control in complex transition metal oxides. Annu. Rev. Mater. Res. 44, 19–43 (2014).

    CAS  Article  Google Scholar 

  3. 3

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).

    CAS  Article  Google Scholar 

  5. 5

    Wang, Y. H., Steinberg, H., Jarillo-Herrero, P. & Gedik, N. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Rondinelli, J. M., May, S. J. & Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37, 261–270 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    CAS  Article  Google Scholar 

  8. 8

    May, S. J. et al. Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B 82, 14110 (2010).

    Article  Google Scholar 

  9. 9

    Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Miyano, K., Tanaka, T., Tomioka, Y. & Tokura, Y. Photoinduced insulator-to-metal transition in a perovskite manganite. Phys. Rev. Lett. 78, 4257–4260 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Takubo, N. et al. Persistent and reversible all-optical phase control in a manganite thin film. Phys. Rev. Lett. 95, 017404 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Ichikawa, H. et al. Transient photoinduced ‘hidden’ phase in a manganite. Nature Mater. 10, 101–105 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. Current switching of resistive states in magnetoresistive manganites. Nature 388, 50–52 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Li, T. et al. Femtosecond switching of magnetism via strongly correlated spin-charge quantum excitations. Nature 496, 69–73 (2013).

    CAS  Article  Google Scholar 

  16. 16

    Hwang, H. Y., Cheong, S.-W., Radaelli, P. G., Marezio, M. & Batlogg, B. Lattice effects on the magnetoresistance in doped LaMnO3 . Phys. Rev. Lett. 75, 914–917 (1995).

    CAS  Article  Google Scholar 

  17. 17

    Ahn, K., Lookman, T. & Bishop, A. Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 804, 401–404 (2004).

    Article  Google Scholar 

  18. 18

    Burgy, J., Moreo, A. & Dagotto, E. Relevance of cooperative lattice effects and stress fields in phase-separation theories for CMR manganites. Phys. Rev. Lett. 92, 097202 (2004).

    Article  Google Scholar 

  19. 19

    Kiryukhin, V. et al. An X-ray-induced insulator–metal transition in a magnetoresistive manganite. Nature 386, 813–815 (1997).

    CAS  Article  Google Scholar 

  20. 20

    Chakhalian, J., Millis, A. J. & Rondinelli, J. Whither the oxide interface. Nature Mater. 11, 92–94 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Nakamura, M., Ogimoto, Y., Tamaru, H., Izumi, M. & Miyano, K. Phase control through anisotropic strain in Nd0.5Sr0.5MnO3 thin films. Appl. Phys. Lett. 86, 182504 (2005).

    Article  Google Scholar 

  22. 22

    Huang, Z. et al. Tuning the ground state of La0.67Ca0.33MnO3 films via coherent growth on orthorhombic NdGaO3 substrates with different orientations. Phys. Rev. B 86, 014410 (2012).

    Article  Google Scholar 

  23. 23

    Wang, L. F. et al. Annealing assisted substrate coherency and high-temperature antiferromagnetic insulating transition in epitaxial La0.67Ca0.33MnO3/NdGaO3 (001) films. AIP Adv. 3, 52106 (2013).

    Article  Google Scholar 

  24. 24

    Basov, D. N., Averitt, R. D., van der Marel, D., Dressel, M. & Haule, K. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Kovaleva, N. et al. Spin-controlled Mott–Hubbard bands in LaMnO3 probed by optical ellipsometry. Phys. Rev. Lett. 93, 147204 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Quijada, M., Černe, J., Simpson, J. & Drew, H. Optical conductivity of manganites: crossover from Jahn–Teller small polaron to coherent transport in the ferromagnetic state. Phys. Rev. B 58, 16093–16102 (1998).

    CAS  Article  Google Scholar 

  27. 27

    Kim, K., Lee, S., Noh, T. & Cheong, S.-W. Charge ordering fluctuation and optical pseudogap in La1−xCaxMnO3 . Phys. Rev. Lett. 88, 167204 (2002).

    CAS  Article  Google Scholar 

  28. 28

    Shin, T., Wolfson, J. W., Teitelbaum, S. W., Kandyla, M. & Nelson, K. A. Dual echelon femtosecond single-shot spectroscopy. Rev. Sci. Inst. 85, 83115 (2014).

    Article  Google Scholar 

  29. 29

    Wall, S., Prabhakaran, D., Boothroyd, A. & Cavalleri, A. Ultrafast coupling between light, coherent lattice vibrations, and the magnetic structure of semicovalent LaMnO3 . Phys. Rev. Lett. 103, 097402 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Chatterji, T., Henry, P. & Ouladdiaf, B. Neutron diffraction investigation of the magneto-elastic effect in LaMnO3 . Phys. Rev. B 77, 212403 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

R.D.A. and J.Z. acknowledge support from DOE—Basic Energy Sciences under Grant No. DE-FG02-09ER46643. X.T., F.J. and W.W. acknowledge support from the NSF of China (Grant No. 11274287), the National Basic Research Program of China (Grant Nos. 2012CB927402 and 2015CB921201) and from NSF of China (Grant Nos. 11474263 and U1432251). S.W.T. and K.A.N. acknowledge support from Office of Naval Research (N00014-12-1-0530) and the National Science Foundation (CHE-1111557). M.L., K.W.P. and D.N.B. are supported by DE-SC0012375 and DE-SC0012592. D.N.B. is the Moore Foundation Investigator in Quantum Materials, EPiQS Initiative GBMF4533.

Author information

Affiliations

Authors

Contributions

J.Z. and R.D.A. developed the idea. X.T., F.J. and W.W. performed material growth and film characterization. J.Z., M.L., K.W.P. and D.N.B. performed the optical conductivity measurements. J.Z., and S.W.T., R.D.A., K.A.N. performed the THz and single-shot measurements. J.Z. and R.D.A. performed the Ginzburg–Landau analysis. R.D.A., W.W., D.N.B. and K.A.N. supervised the project. J.Z. and R.D.A. wrote the paper. All authors contributed to the understanding of the physics and revised the paper.

Corresponding authors

Correspondence to Jingdi Zhang or R. D. Averitt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 6761 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Tan, X., Liu, M. et al. Cooperative photoinduced metastable phase control in strained manganite films. Nature Mater 15, 956–960 (2016). https://doi.org/10.1038/nmat4695

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing