Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films


Hydrogen, the smallest and the lightest atomic element, is reversibly incorporated into interstitial sites in vanadium dioxide (VO2), a correlated oxide with a 3d1 electronic configuration, and induces electronic phase modulation. It is widely reported that low hydrogen concentrations stabilize the metallic phase, but the understanding of hydrogen in the high doping regime is limited. Here, we demonstrate that as many as two hydrogen atoms can be incorporated into each VO2 unit cell, and that hydrogen is reversibly absorbed into, and released from, VO2 without destroying its lattice framework. This hydrogenation process allows us to elucidate electronic phase modulation of vanadium oxyhydride, demonstrating two-step insulator (VO2)–metal (HxVO2)–insulator (HVO2) phase modulation during inter-integer d-band filling. Our finding suggests the possibility of reversible and dynamic control of topotactic phase modulation in VO2 and opens up the potential application in proton-based Mottronics and novel hydrogen storage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Low-temperature hydrogenation of VO2.
Figure 2: Structural phase modulation by hydrogenation.
Figure 3: Dynamic resistivity modulation of HxVO2 by hydrogenation.
Figure 4: X-ray photoemission spectroscopy and NEXAFS of pristine VO2 and fully hydrogenated insulating HVO2.
Figure 5: Calculated structural and electronic modulation in HVO2.


  1. 1

    Dagotto, E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005).

  2. 2

    Ngai, J. H., Walker, F. J. & Ahn, C. H. Correlated oxide physics and electronics. Annu. Rev. Mater. Res. 44, 1–17 (2014).

  3. 3

    Yang, Z., Ko, C. & Ramanathan, S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011).

  4. 4

    Jeen, H. et al. Reversible redox reactions in an epitaxially stabilized SrCoOx oxygen sponge. Nature Mater. 12, 1057–1063 (2013).

  5. 5

    Inoue, S. et al. Anisotropic oxygen diffusion at low temperature in perovskite-structure iron oxides. Nature Chem. 2, 213–217 (2010).

  6. 6

    Xie, Y. et al. Control of functional responses via reversible oxygen loss in La1−xSrxFeO3−δ films. Adv. Mater. 26, 1434–1438 (2013).

  7. 7

    Zhang, K. H. L. et al. Reversible nano-structuring of SrCrO3−δ through oxidation and reduction at low temperature. Nature Commun. 5, 4669 (2014).

  8. 8

    Morin, F. J. Oxides which show a metal-to-insulator transition at the Neel temperature. Phys. Rev. Lett. 3, 34–36 (1959).

  9. 9

    Goodenough, J. B. The two components of the crystallographic transition in VO2 . J. Solid State Chem. 3, 490–500 (1971).

  10. 10

    Jeong, J. et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

  11. 11

    Gu, Q., Falk, A., Wu, J., Ouyang, L. & Park, H. Current-driven phase oscillation and domain-wall propagation in WxV1−xO2 nanobeams. Nano Lett. 7, 363–366 (2007).

  12. 12

    Tan, X. et al. Unraveling metal-insulator transition mechanism of VO2 triggered by tungsten doping. Sci. Rep. 2, 466 (2012).

  13. 13

    Van de Walle, C. G. Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012–1015 (2000).

  14. 14

    Janotti, A. & Van de Walle, C. G. Hydrogen multicentre bonds. Nature Mater. 6, 44–47 (2007).

  15. 15

    Lin, J. et al. Hydrogen diffusion and stabilization in single-crystal VO2 micro/nanobeams by direct atomic hydrogenation. Nano Lett. 14, 5445–5451 (2014).

  16. 16

    Wei, J., Ji, H., Guo, W., Nevidomskyy, A. H. & Natelson, D. Hydrogen stabilization of metallic vanadium dioxide in single-crystal nanobeams. Nature Nanotech. 7, 357–362 (2012).

  17. 17

    Warnick, K. H., Wang, B. & Pantelides, S. T. Hydrogen dynamics and metallic phase stabilization in VO2 . Appl. Phys. Lett. 104, 101913–101915 (2014).

  18. 18

    Andreev, V. N., Kapralova, V. M. & Klimov, V. A. Effect of hydrogenation on the metal-semiconductor phase transition in vanadium dioxide thin films. Phys. Solid State 49, 2318–2322 (2007).

  19. 19

    Wu, C. Z. et al. Hydrogen-incorporation stabilization of metallic VO2(R) phase to room temperature, displaying promising low-temperature thermoelectric effect. J. Am. Chem. Soc. 133, 13798–13801 (2011).

  20. 20

    Bermudez, V. M., Williams, R. T., Long, J. P., Reed, R. K. & Klein, P. H. Photoemission study of hydrogen adsorption on vanadium dioxide near the semiconductor-metal phase transition. Phys. Rev. B 45, 9266–9271 (1992).

  21. 21

    Filinchuk, Y. et al. In situ diffraction study of catalytic hydrogenation of VO2: stable phases and origins of metallicity. J. Am. Chem. Soc. 136, 8100–8109 (2014).

  22. 22

    Zhou, Y., Ramanathan, S. & Shi, J. Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping. Nature Commun. 5, 4860 (2014).

  23. 23

    Chippindale, A. M., Dickens, P. G. & Powell, A. V. Synthesis, characterization, and inelastic neutron scattering study of hydrogen insertion compounds of VO2(rutile). J. Solid State Chem. 93, 526–533 (2003).

  24. 24

    Chen, J. K. et al. Self-limited kinetics of electron doping in correlated oxides. Appl. Phys. Lett. 107, 031905 (2015).

  25. 25

    Ishikawa, R. et al. Direct imaging of hydrogen-atom columns in a crystal by annular bright-field electron microscopy. Nature Mater. 10, 278–281 (2011).

  26. 26

    Wang, G. M. et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026–3033 (2011).

  27. 27

    Shannon, R. D. & Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B 25, 925–946 (1968).

  28. 28

    Bishop, S. R. et al. Chemical expansion: implications for electrochemical energy storage and conversion devices. Annu. Rev. Mater. Res. 44, 205–239 (2014).

  29. 29

    Zhao, Y. et al. Hydrogen-doping stabilized metallic VO2 (R) thin films and their application to suppress Fabry-Perot resonances in the terahertz regime. Appl. Phys. Lett. 104, 241901 (2014).

  30. 30

    Corr, S. A. et al. Controlled reduction of vanadium oxide nanoscrolls: crystal structure, morphology, and electrical properties. Chem. Mater. 20, 6396–6404 (2008).

  31. 31

    Park, J. H. et al. Measurement of a solid-state triple point at the metal-insulator transition in VO2 . Nature 500, 431–434 (2013).

  32. 32

    Silversmit, G., Depla, D., Poelman, H., Marin, G. B. & DeGryse, R. Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). J. Electron Spectrosc. Relat. Phenom. 135, 167–175 (2004).

  33. 33

    Xu, Y., Zheng, L. & Xie, Y. From synthetic montroseite VOOH to topochemical paramontroseite VO2 and their applications in aqueous lithium ion batteries. Dalton Trans. 39, 10729–10710 (2010).

  34. 34

    Whittaker, L., Jaye, C., Fu, Z., Fischer, D. A. & Banerjee, S. Depressed phase transition in solution-grown VO2 nanostructures. J. Am. Chem. Soc. 131, 8884–8894 (2009).

  35. 35

    Sakai, E. et al. Competition between instabilities of Peierls transition and Mott transition in W-doped VO2 thin films. Phys. Rev. B 84, 195132–195135 (2011).

  36. 36

    Eyert, V. VO2: a novel view from band theory. Phys. Rev. Lett. 107, 016401 (2011).

  37. 37

    Shibuya, K., Kawasaki, M. & Tokura, Y. Metal-insulator transition in epitaxial V1−xWxO2 (0 ≤ x ≤ 0.33) thin films. Appl. Phys. Lett. 96, 022102–022104 (2010).

  38. 38

    Van Overmeere, Q., Kerman, K. & Ramanathan, S. Energy storage in ultrathin solid oxide fuel cells. Nano Lett. 12, 3756–3760 (2012).

  39. 39

    Katase, T., Endo, K., Tohei, T., Ikuhara, Y. & Ohta, H. Room-temperature-protonation-driven on-demand metal-insulator conversion of a transition metal oxide. Adv. Electron. Mater. 1, 1500063 (2015).

  40. 40

    Sim, J. S., Zhou, Y. & Ramanathan, S. Suspended sub-50 nm vanadium dioxide membrane transistors: fabrication and ionic liquid gating studies. Nanoscale 4, 7056–7062 (2012).

  41. 41

    Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8210 (2003).

  42. 42

    Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106–224106 (2006).

  43. 43

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

Download references


We thank J. B. Song for RBS and ERD measurement, Y. C. Park for STEM, and J. H. Lee and S. Lee for helpful discussion. H.Y. and J.S. acknowledge support for this work by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2014R1A1A1035950), and the IT R&D programme of MOTIE/KEIT (10045226). M.C. acknowledges support for this work by the Basic Science Research Program through the NRF funded by the Ministry of Science, ICT & Future Planning (2015R1C1A1A02037595). M.C., T.-W. L. and S.-Y.C. were supported by the Global Frontier R&D Program (2013-073298) on Center for Hybrid Interface Materials (HIM) funded by the Ministry of Science, ICT & Future Planning (2013M3A6B1078872). In addition, this study was partially supported by the Fundamental Research Program of the Korean Institute of Materials Science (KIMS) and Brain Korea 21 PLUS project (Center for Creative Industrial Materials).

Author information




M.C. and J.S. conceived the idea and designed the study. H.Y. performed the film growth, X-ray diffraction and synchrotron measurement under the supervision of J.S. H.Y. and H.K. carried out the in situ electrical measurement under the guidance of J.S. and J.-K.K. M.C. performed the electronic structure calculations. T.-W.L. and S.-Y.C. characterized the samples with scanning transmission electron microscopy. J.S. directed the research. H.Y., M.C. and J.S. wrote the manuscript and all authors commented on it.

Corresponding author

Correspondence to Junwoo Son.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information (PDF 10624 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yoon, H., Choi, M., Lim, T. et al. Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films. Nature Mater 15, 1113–1119 (2016).

Download citation

Further reading