Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film

Abstract

Superconducting and topological states are two most intriguing quantum phenomena in solid materials. The entanglement of these two states, the topological superconducting state, will give rise to even more exotic quantum phenomena. While many materials are found to be either a superconductor or a topological insulator, it is very rare that both states exist in one material. Here, we demonstrate by first-principles theory as well as scanning tunnelling spectroscopy and angle-resolved photoemission spectroscopy experiments that the recently discovered ‘two-dimensional (2D) superconductor’ of single-layer FeSe also exhibits 1D topological edge states within an energy gap of 40 meV at the M point below the Fermi level. It is the first 2D material that supports both superconducting and topological states, offering an exciting opportunity to study 2D topological superconductors through the proximity effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Theoretical atomic structure, band structure and quantized spin Hall conductance.
Figure 2: Band-structure comparison between theory and second-derivative ARPES spectra.
Figure 3: Theoretical topological edge state of FeSe/STO.
Figure 4: Topological edge state comparison between theory and STS spectra.

Similar content being viewed by others

References

  1. Wang, Q. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe Films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012).

    Article  Google Scholar 

  2. Liu, D. et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nature Commun. 3, 931 (2012).

    Article  Google Scholar 

  3. He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nature Mater. 12, 605–610 (2013).

    Article  CAS  Google Scholar 

  4. Tan, S. et al. Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films. Nature Mater. 12, 634–640 (2013).

    Article  CAS  Google Scholar 

  5. Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 . Nature 515, 245–248 (2014).

    Article  CAS  Google Scholar 

  6. Zhang, W. et al. Direct observation of high-temperature superconductivity in one-unit-cell FeSe films. Chin. Phys. Lett. 31, 017401 (2014).

    Article  Google Scholar 

  7. Ge, J.-F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 . Nature Mater. 14, 285–289 (2015).

    Article  CAS  Google Scholar 

  8. Hao, N. & Hu, J. Topological phases in the single-layer FeSe. Phys. Rev. X 4, 031053 (2014).

    Google Scholar 

  9. Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).

    Article  Google Scholar 

  10. Hao, N. & Shen, S.-Q. Topological superconducting states in monolayer FeSe/SrTiO3 . Phys. Rev. B 92, 165104 (2015).

    Article  Google Scholar 

  11. Coh, S., Cohen, M. L. & Louie, S. G. Large electron–phonon interactions from FeSe phonons in a monolayer. New J. Phys. 17, 073027 (2015).

    Article  Google Scholar 

  12. Liu, K., Lu, Z.-Y. & Xiang, T. Atomic and electronic structures of FeSe monolayer and bilayer thin films on SrTiO3(001): first-principles study. Phys. Rev. B 85, 235123 (2013).

    Article  Google Scholar 

  13. Berlijn, T. et al. Doping effects of Se vacancies in monolayer FeSe. Phys. Rev. B 89, 020501(R) (2014).

    Article  Google Scholar 

  14. Bazhirov, T. & Cohen, M. L. Effects of charge doping and constrained magnetization on the electronic structure of an FeSe monolayer. J. Phys. Condens. Mater. 25, 105506 (2013).

    Article  Google Scholar 

  15. Zheng, F., Wang, Z., Kang, W. & Zhang, P. Antiferromagnetic FeSe monolayer on SrTiO3: the charge doping and electric field effects. Sci. Rep. 3, 2213 (2013).

    Article  Google Scholar 

  16. Hor, Y. S. et al. Superconductivity in CuxBi2Se3 and its implications for pairing in the undoped topological insulator. Phys. Rev. Lett. 104, 057001 (2010).

    Article  CAS  Google Scholar 

  17. Novak, M. et al. Unusual nature of fully gapped superconductivity in In-doped SnTe. Phys. Rev. B 88, 140502(R) (2013).

    Article  Google Scholar 

  18. Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  CAS  Google Scholar 

  19. Wang, Z. F., Su, N. & Liu, F. Prediction of a two-dimensional organic topological insulator. Nano Lett. 13, 2842–2845 (2013).

    Article  CAS  Google Scholar 

  20. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  CAS  Google Scholar 

  21. König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. Science 318, 766–770 (2007).

    Article  Google Scholar 

  22. Mong, R. S. K., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010).

    Article  Google Scholar 

  23. Essin, A. M. & Gurarie, V. Antiferromagnetic topological insulators in cold atomic gases. Phys. Rev. B 85, 195116 (2012).

    Article  Google Scholar 

  24. Guo, H., Feng, S. & Shen, S.-Q. Quantum spin Hall effect induced by nonmagnetic and magnetic staggered potentials. Phys. Rev. B 83, 045114 (2011).

    Article  Google Scholar 

  25. Mostofi, A. A. et al. Wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  CAS  Google Scholar 

  26. Wang, Z. F., Liu, Z. & Liu, F. Organic topological insulators in organometallic lattices. Nature Commun. 4, 1471 (2013).

    Article  CAS  Google Scholar 

  27. Wang, Z. F., Chen, L. & Liu, F. Tuning topological edge states of Bi (111) bilayer film by edge adsorption. Nano Lett. 14, 2879–2883 (2014).

    Article  CAS  Google Scholar 

  28. Yang, F. et al. Spatial and energy distribution of topological edge states in single Bi(111) bilayer. Phys. Rev. Lett. 109, 016801 (2012).

    Article  Google Scholar 

  29. Tamai, A. et al. Strong electron correlations in the normal state of the iron-based FeSe0.42Te0.58 superconductor observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 104, 097002 (2010).

    Article  CAS  Google Scholar 

  30. Maletz, J. et al. Unusual band renormalization in the simplest iron-based superconductor FeSe1−x . Phys. Rev. B 89, 220506(R) (2014).

    Article  Google Scholar 

  31. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561(R) (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Z.F.W. and F.Liu acknowledge financial support from DOE-BES (No. DE-FG02-04ER46148). Z.F.W. acknowledges additional financial support from the Chinese Youth 1000 Talents Program and Fundamental Research Funds for the Central Universities. X.J.Z. acknowledges financial support from the NSFC (No. 11190022 and 11334010) and the Strategic Priority Research Program (B) of CAS (No. XDB07020300). Q.K.X. and X.M. acknowledge financial support from the MOST of China (No. 2009CB929400 and 2012CB921702). We also thank the Supercomputing Center at USTC, NERSC and CHPC at University of Utah for providing the computing resources.

Author information

Authors and Affiliations

Authors

Contributions

Z.F.W. and F.Liu conceived the project, and Z.F.W. carried out the theoretical calculation. H.Z., C.L., C.T., C.S., Y.Z., J.P., F.Li, C.N., L.W., X.M. and Q.K.X. carried out the MBE thin-film growth and STS measurement. D.L. and X.J.Z. carried out the ARPES measurement. Z.F.W. and F.Liu prepared the manuscript with input from X.J.Z., X.M. and Q.K.X.

Corresponding authors

Correspondence to X. J. Zhou, Xucun Ma or Feng Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, H., Liu, D. et al. Topological edge states in a high-temperature superconductor FeSe/SrTiO3(001) film. Nature Mater 15, 968–973 (2016). https://doi.org/10.1038/nmat4686

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4686

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing