Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis



After more than a decade, it is still unknown whether the plasmon-mediated growth of silver nanostructures can be extended to the synthesis of other noble metals, as the molecular mechanisms governing the growth process remain elusive. Herein, we demonstrate the plasmon-driven synthesis of gold nanoprisms and elucidate the details of the photochemical growth mechanism at the single-nanoparticle level. Our investigation reveals that the surfactant polyvinylpyrrolidone preferentially adsorbs along the nanoprism perimeter and serves as a photochemical relay to direct the anisotropic growth of gold nanoprisms. This discovery confers a unique function to polyvinylpyrrolidone that is fundamentally different from its widely accepted role as a crystal-face-blocking ligand. Additionally, we find that nanocrystal twinning exerts a profound influence on the kinetics of this photochemical process by controlling the transport of plasmon-generated hot electrons to polyvinylpyrrolidone. These insights establish a molecular-level description of the underlying mechanisms regulating the plasmon-driven synthesis of gold nanoprisms.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Plasmon-driven synthesis of Au nanostructures.
Figure 2: The influence of plasmonic hotspots on Au nanoprism growth.
Figure 3: The role of PVP in directing the anisotropic growth of Au nanoprisms.
Figure 4: Plasmon-driven synthesis of hexagonal or triangular Au nanoprisms.


  1. 1

    Jin, R. et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Langille, M. R., Personick, M. L. & Mirkin, C. A. Plasmon-mediated syntheses of metallic nanostructures. Angew. Chem. Int. Ed. 52, 13910–13940 (2013).

    CAS  Article  Google Scholar 

  3. 3

    Xue, C., Millstone, J. E., Li, S. & Mirkin, C. A. Plasmon-driven synthesis of triangular core–shell nanoprisms from gold seeds. Angew. Chem. Int. Ed. 46, 8436–8439 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Maillard, M., Huang, P. & Brus, L. Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Lett. 3, 1611–1615 (2003).

    CAS  Article  Google Scholar 

  5. 5

    Xue, C., Metraux, G. S., Millstone, J. E. & Mirkin, C. A. Mechanistic study of photomediated triangular silver nanoprism growth. J. Am. Chem. Soc. 130, 8337–8344 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Wu, X. et al. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. J. Am. Chem. Soc. 130, 9500–9506 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Langille, M. R., Zhang, J., Personick, M. L., Li, S. & Mirkin, C. A. Stepwise evolution of spherical seeds into 20-fold twinned icosahedra. Science 337, 954–957 (2012).

    CAS  Article  Google Scholar 

  8. 8

    Watanabe, K., Menzel, D., Nilius, N. & Freund, H.-J. Photochemistry on metal nanoparticles. Chem. Rev. 106, 4301–4320 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Chen, H., Ratner, M. A. & Schatz, G. C. QM/MM study of photoinduced reduction of a tetrahedral Ag20+ cluster by a Ag atom. J. Phys. Chem. C 118, 1755–1762 (2012).

    Article  Google Scholar 

  10. 10

    Redmond, P. L., Wu, X. & Brus, L. Photovoltage and photocatalyzed growth in citrate-stabilized colloidal silver nanocrystals. J. Phys. Chem. C 111, 8942–8947 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Jin, R. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Lee, G. P. et al. Light-driven transformation processes of anisotropic silver nanoparticles. ACS Nano 7, 5911–5921 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Zhai, Y. et al. Superparamagnetic plasmonic nanohybrids: shape-controlled synthesis, TEM-induced structure evolution, and efficient sunlight-driven inactivation of bacteria. ACS Nano 5, 8562–8570 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Alloyeau, D. et al. Unravelling kinetic and thermodynamic effects on the growth of gold nanoplates by liquid transmission electron microscopy. Nano Lett. 15, 2574–2581 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Lee, K. E., Hesketh, A. V. & Kelly, T. L. Chemical stability and degradation mechanisms of triangular Ag, Ag@Au, and Au nanoprisms. Phys. Chem. Chem. Phys. 16, 12407–12414 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Tangeysh, B. et al. Triangular gold nanoplate growth by oriented attachment of Au seeds generated by strong field laser reduction. Nano Lett. 15, 3377–3382 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Lide, D. R. CRC Handbook of Chemistry and Physics (CRC Press/Taylor and Francis, 2008).

    Google Scholar 

  18. 18

    Yang, Y., Liu, J., Fu, Z. & Qin, D. Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 136, 8153–8156 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Senoner, M. & Unger, W. E. S. SIMS imaging of the nanoworld: applications in science and technology. J. Anal. At. Spectrom. 27, 1050–1068 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Millstone, J. E. et al. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J. Am. Chem. Soc. 127, 5312–5313 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60–103 (2009).

    CAS  Article  Google Scholar 

  22. 22

    DuChene, J. S. et al. Halide anions as shape-directing agents for obtaining high-quality anisotropic gold nanostructures. Chem. Mater. 25, 1392–1399 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Lohse, S. E., Burrows, N. D., Scarabelli, L., Liz-Marzán, L. M. & Murphy, C. J. Anisotropic noble metal nanocrystal growth: the role of halides. Chem. Mater. 26, 34–43 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Koh, A. L. et al. Electron energy-loss spectroscopy (EELS) of surface plasmons in single silver nanoparticles and dimers: influence of beam damage and mapping of dark modes. ACS Nano 3, 3015–3022 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858–3887 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Govorov, A. O. et al. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res. Lett. 1, 84–90 (2006).

    Article  Google Scholar 

  27. 27

    Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nature Chem. 3, 467–472 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Manjavacas, A., Liu, J. G., Kulkarni, V. & Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 8, 7630–7638 (2014).

    CAS  Article  Google Scholar 

  29. 29

    Polte, J. et al. Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution. ACS Nano 4, 1076–1082 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Regalbuto, J. R. Catalyst Preparation: Science and Engineering (CRC Press/Taylor and Francis Group, 2007).

    Google Scholar 

  31. 31

    Wu, X., Thrall, E. S., Liu, H., Steigerwald, M. & Brus, L. Plasmon induced photovoltage and charge separation in citrate-stabilized gold nanoparticles. J. Phys. Chem. C 114, 12896–12899 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Zeng, J. et al. Successive deposition of silver on silver nanoplates: lateral versus vertical growth. Angew. Chem. Int. Ed. 50, 244–249 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Millstone, J. E., Hurst, S. J., Métraux, G. S., Cutler, J. I. & Mirkin, C. A. Colloidal gold and silver triangular nanoprisms. Small 5, 646–664 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Tao, A. R., Habas, S. & Yang, P. Shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008).

    CAS  Article  Google Scholar 

  35. 35

    Xia, Y., Xia, X. & Peng, H. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966 (2015).

    CAS  Article  Google Scholar 

  36. 36

    Li, J., Liu, J., Yang, Y. & Qin, D. Bifunctional Ag@Pd-Ag nanocubes for highly sensitive monitoring of catalytic reactions by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 7039–7042 (2015).

    CAS  Article  Google Scholar 

  37. 37

    Wang, Y. M. et al. Defective twin boundaries in nanotwinned metals. Nature Mater. 12, 697–702 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Saywell, A., Schwarz, J., Hecht, S. & Grill, L. Polymerization on stepped surfaces: alignment of polymers and identification of catalytic sites. Angew. Chem. Int. Ed. 51, 5096–5100 (2012).

    CAS  Article  Google Scholar 

  39. 39

    McFarland, E. W. & Tang, J. A photovoltaic device structure based on internal electron emission. Nature 421, 616–618 (2003).

    CAS  Article  Google Scholar 

  40. 40

    Redmond, P. L. & Brus, L. E. “Hot electron” photo-charging and electrochemical discharge kinetics of silver nanocrystals. J. Phys. Chem. C 111, 14849–14854 (2007).

    CAS  Article  Google Scholar 

  41. 41

    Lu, L., Shen, Y., Chen, X., Qian, L. & Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Scarabelli, L., Coronado-Puchau, M., Giner-Casares, J. J., Langer, J. & Liz-Marzán, L. M. Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 8, 5833–5842 (2014).

    CAS  Article  Google Scholar 

  43. 43

    Chen, L. et al. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching. Nano Lett. 14, 7201–7206 (2014).

    CAS  Article  Google Scholar 

  44. 44

    Millstone, J. E., Wei, W., Jones, M. R., Yoo, H. & Mirkin, C. A. Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett. 8, 2526–2529 (2008).

    CAS  Article  Google Scholar 

Download references


The work is supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0304. We also thank the National Science Foundation for support under Grant CHE-1308644 and the CCI Center for Nanostructured Electronic Materials (CHE-1038015). F.O. and B.D. acknowledge the generous support from the University of Florida (UF) Howard Hughes Medical Institute (HHMI) Intramural Award and the UF University Scholars Program. B.Y. acknowledges support from UF’s Student Science Training Program. We thank M. Hill and B. Sumerlin for assistance with zeta potential measurements. Electron microscopy work was carried out in part at the Center for Functional Nanomaterials at Brookhaven National Laboratory (Upton, New York) through User Proposal BNL-CFN-31913 and BNL-CFN-33789, supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, under Contract DE-SC0012704. A portion of the research (AFM and NanoSIMS characterization) was performed at the Environmental Molecular Sciences Laboratory (EMSL) through User Proposal 40065, a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research located at the Pacific Northwest National Laboratory (PNNL) (Richland, Washington). PNNL is operated by Battelle for the US DOE under contract DE-AC06-76RLO1930.

Author information




Y.Z., J.S.D. and W.D.W. conceived the system and designed the experiments. Y.Z., J.S.D., B.Y. and W.G. synthesized the materials. J.S.D., A.C.J.-P., D.S. and E.A.S. performed the EELS and TEM characterization. Y.-C.W. and Z.Z. performed the NanoSIMS characterization. Y.Z., J.Q. and E.W.Z. performed the SEM measurements. Y.-C.W. and D.H. performed the AFM measurement. Y.Z., J.S.D. and W.D.W. analysed and interpreted the data. Y.Z., J.S.D. and W.D.W. prepared the manuscript with contributions from all authors. W.D.W. supervised the project.

Corresponding author

Correspondence to Wei David Wei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6236 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhai, Y., DuChene, J., Wang, YC. et al. Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis. Nature Mater 15, 889–895 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing