Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-range charge-density-wave proximity effect at cuprate/manganate interfaces


The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation1,2,3,4,5,6,7,8,9,10. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder11,12,13, and a long-range-ordered CDW state in high magnetic fields14,15,16 is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Resonant X-ray scattering from YCBO–LCMO superlattices.
Figure 2: Tomographic view of a 50-nm-thick YBCO layer in a YBCO–LCMO SL.
Figure 3: Temperature dependence of the RXS intensity for a SL with 50-nm-thick YBCO.
Figure 4: Magnetic field dependence of the RXS intensity for a SL with 50-nm-thick YBCO.


  1. 1

    Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy . Nature 477, 191–194 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 . Nature Phys. 8, 871–876 (2012).

    CAS  Article  Google Scholar 

  4. 4

    Achkar, A. J. et al. Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O6+δ superconductors identified by resonant elastic X-ray scattering. Phys. Rev. Lett. 109, 167001 (2012).

    CAS  Article  Google Scholar 

  5. 5

    Blackburn, E. et al. X-ray diffraction observations of a charge-density-wave order in superconducting ortho-II YBa2Cu3O6.54 single crystals in zero magnetic field. Phys. Rev. Lett. 110, 137004 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Blanco-Canosa, S. et al. Momentum-dependent charge correlations in YBa2Cu3O6+δ superconductors probed by resonant X-ray scattering: evidence for three competing phases. Phys. Rev. Lett. 110, 187001 (2013).

    CAS  Article  Google Scholar 

  7. 7

    da Silva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Comin, R. et al. Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ . Science 343, 390–392 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Tabis, W. et al. Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate. Nature Commun. 5, 5875 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Hayward, L. E. et al. Angular fluctuations of a multicomponent order describe the pseudogap of YBa2Cu3O6+x . Science 343, 1336–1339 (2014).

    CAS  Article  Google Scholar 

  11. 11

    Le Tacon, M. et al. Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation. Nature Phys. 10, 52–58 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Wu, T. et al. Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy . Nature Commun. 6, 6438 (2015).

    CAS  Article  Google Scholar 

  13. 13

    Nie, L., Tarjus, G. & Kivelson, S. A. Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates. Proc. Natl Acad. Sci. USA 111, 7980–7985 (2014).

    CAS  Article  Google Scholar 

  14. 14

    Le Boeuf, D. et al. Thermodynamic phase diagram of static charge order in underdoped YBa2Cu3Oy . Nature Phys. 9, 79–83 (2013).

    CAS  Article  Google Scholar 

  15. 15

    Sebastian, S. E. et al. Normal-state electronic structure in underdoped high-Tc copper oxides. Nature 511, 61–64 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Gerber, S. et al. Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields. Science 350, 949–952 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Blanco-Canosa, S. et al. Resonant X-ray scattering study of charge-density wave correlations in YBa2Cu3O6+x . Phys. Rev. B 90, 054513 (2014).

    Article  Google Scholar 

  18. 18

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Bozovic, I. et al. Giant proximity effect in cuprate superconductors. Phys. Rev. Lett. 93, 157002 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Nakano, M. et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487, 459–462 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Jeong, J. et al. Suppression of metal–insulator transition in VO2 by electric field induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Peña, V. et al. Coupling of superconductors through a half-metallic ferromagnet: evidence for a long-range proximity effect. Phys. Rev. B 69, 224502 (2004).

    Article  Google Scholar 

  23. 23

    Hoppler, J. et al. Giant superconductivity-induced modulation of the ferromagnetic magnetization in a cuprate–manganite superlattice. Nature Mater. 8, 315–319 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Kalcheim, Y., Kirzhner, T., Koren, G. & Millo, O. Long-range proximity effect in La2/3Ca1/3MnO3/(100)YBa2Cu3O7−δ ferromagnet/superconductor bilayers: evidence for induced triplet superconductivity in the ferromagnet. Phys. Rev. B 83, 064510 (2011).

    Article  Google Scholar 

  25. 25

    Visani, C. et al. Equal-spin Andreev reflection and long-range coherent transport in high-temperature superconductor/halfmetallic ferromagnet junctions. Nature Phys. 8, 539–543 (2012).

    CAS  Article  Google Scholar 

  26. 26

    Stahn, J. et al. Magnetic proximity effect in perovskite superconductor/ferromagnet multilayers. Phys. Rev. B 71, 140509(R) (2005).

    Article  Google Scholar 

  27. 27

    Chakhalian, J. et al. Magnetism at the interface between ferromagnetic and superconducting oxides. Nature Phys. 2, 244–248 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Chakhalian, J. et al. Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114–1117 (2007).

    CAS  Article  Google Scholar 

  29. 29

    Yunoki, S. et al. Electron doping of cuprates via interfaces with manganites. Phys. Rev. B 76, 064532 (2007).

    Article  Google Scholar 

  30. 30

    Chien, T. Y. et al. Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides. Nature Commun. 4, 2336 (2013).

    Article  Google Scholar 

  31. 31

    Satapathy, D. K. et al. Magnetic proximity effect in YBa2Cu3O7–La2/3Ca1/3MnO3 and YBa2Cu3O7–LaMnO3+δ superlattices. Phys. Rev. Lett. 108, 197201 (2012).

    CAS  Article  Google Scholar 

  32. 32

    Driza, N. et al. Long-range transfer of electron–phonon coupling in oxide superlattices. Nature Mater. 11, 675–681 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Heinze, S. et al. Thermoelectric properties of YBa2Cu3O6+δ–La2/3Ca1/3MnO3 superlattices. Appl. Phys. Lett. 101, 131603 (2012).

    Article  Google Scholar 

  34. 34

    Fink, J., Schierle, E., Weschke, E. & Geck, J. Resonant elastic soft X-ray scattering. Rep. Prog. Phys. 76, 056502 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Liang, R. et al. Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals. Phys. Rev. B 73, 180505 (2006).

    Article  Google Scholar 

Download references


We acknowledge fruitful discussions with V. Hinkov, V. Zabolotnyy, A. Charnukha, G. Sawatzky and C. Bernhard. This work was partly funded by the Deutsche Forschungsgemeinschaft within the framework of the SFB/TRR 80.

Author information




G.C., H.U.H. and G.L. synthesized the thin-film and superlattice samples. A.F., S.B.-C., E.S., Y.L., M.W., M.B. and M.M. performed the sample characterization and the X-ray scattering experiments. A.F., M.B. and M.L.T. analysed the X-ray data. Y.W. and P.A.v.A. performed the TEM experiments. A.F. and B.K. wrote the manuscript, with contributions from all coauthors. E.B., E.W., M.L.T. and B.K. directed the project.

Corresponding author

Correspondence to B. Keimer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 995 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frano, A., Blanco-Canosa, S., Schierle, E. et al. Long-range charge-density-wave proximity effect at cuprate/manganate interfaces. Nature Mater 15, 831–834 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing