Letter | Published:

Long-range charge-density-wave proximity effect at cuprate/manganate interfaces

Nature Materials volume 15, pages 831834 (2016) | Download Citation

Abstract

The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation1,2,3,4,5,6,7,8,9,10. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder11,12,13, and a long-range-ordered CDW state in high magnetic fields14,15,16 is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

References

  1. 1.

    et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature 477, 191–194 (2011).

  2. 2.

    et al. Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x. Science 337, 821–825 (2012).

  3. 3.

    et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nature Phys. 8, 871–876 (2012).

  4. 4.

    et al. Distinct charge orders in the planes and chains of ortho-III-ordered YBa2Cu3O6+δ superconductors identified by resonant elastic X-ray scattering. Phys. Rev. Lett. 109, 167001 (2012).

  5. 5.

    et al. X-ray diffraction observations of a charge-density-wave order in superconducting ortho-II YBa2Cu3O6.54 single crystals in zero magnetic field. Phys. Rev. Lett. 110, 137004 (2013).

  6. 6.

    et al. Momentum-dependent charge correlations in YBa2Cu3O6+δ superconductors probed by resonant X-ray scattering: evidence for three competing phases. Phys. Rev. Lett. 110, 187001 (2013).

  7. 7.

    et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396 (2014).

  8. 8.

    et al. Charge order driven by Fermi-arc instability in Bi2Sr2−xLaxCuO6+δ. Science 343, 390–392 (2014).

  9. 9.

    et al. Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate. Nature Commun. 5, 5875 (2014).

  10. 10.

    et al. Angular fluctuations of a multicomponent order describe the pseudogap of YBa2Cu3O6+x. Science 343, 1336–1339 (2014).

  11. 11.

    et al. Inelastic X-ray scattering in YBa2Cu3O6.6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation. Nature Phys. 10, 52–58 (2014).

  12. 12.

    et al. Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy. Nature Commun. 6, 6438 (2015).

  13. 13.

    , & Quenched disorder and vestigial nematicity in the pseudogap regime of the cuprates. Proc. Natl Acad. Sci. USA 111, 7980–7985 (2014).

  14. 14.

    et al. Thermodynamic phase diagram of static charge order in underdoped YBa2Cu3Oy. Nature Phys. 9, 79–83 (2013).

  15. 15.

    et al. Normal-state electronic structure in underdoped high-Tc copper oxides. Nature 511, 61–64 (2014).

  16. 16.

    et al. Three-dimensional charge density wave order in YBa2Cu3O6.67 at high magnetic fields. Science 350, 949–952 (2015).

  17. 17.

    et al. Resonant X-ray scattering study of charge-density wave correlations in YBa2Cu3O6+x. Phys. Rev. B 90, 054513 (2014).

  18. 18.

    et al. Emergent phenomena at oxide interfaces. Nature Mater. 11, 103–113 (2012).

  19. 19.

    et al. Giant proximity effect in cuprate superconductors. Phys. Rev. Lett. 93, 157002 (2004).

  20. 20.

    et al. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487, 459–462 (2012).

  21. 21.

    et al. Suppression of metal–insulator transition in VO2 by electric field induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

  22. 22.

    et al. Coupling of superconductors through a half-metallic ferromagnet: evidence for a long-range proximity effect. Phys. Rev. B 69, 224502 (2004).

  23. 23.

    et al. Giant superconductivity-induced modulation of the ferromagnetic magnetization in a cuprate–manganite superlattice. Nature Mater. 8, 315–319 (2009).

  24. 24.

    , , & Long-range proximity effect in La2/3Ca1/3MnO3/(100)YBa2Cu3O7−δ ferromagnet/superconductor bilayers: evidence for induced triplet superconductivity in the ferromagnet. Phys. Rev. B 83, 064510 (2011).

  25. 25.

    et al. Equal-spin Andreev reflection and long-range coherent transport in high-temperature superconductor/halfmetallic ferromagnet junctions. Nature Phys. 8, 539–543 (2012).

  26. 26.

    et al. Magnetic proximity effect in perovskite superconductor/ferromagnet multilayers. Phys. Rev. B 71, 140509(R) (2005).

  27. 27.

    et al. Magnetism at the interface between ferromagnetic and superconducting oxides. Nature Phys. 2, 244–248 (2006).

  28. 28.

    et al. Orbital reconstruction and covalent bonding at an oxide interface. Science 318, 1114–1117 (2007).

  29. 29.

    et al. Electron doping of cuprates via interfaces with manganites. Phys. Rev. B 76, 064532 (2007).

  30. 30.

    et al. Visualizing short-range charge transfer at the interfaces between ferromagnetic and superconducting oxides. Nature Commun. 4, 2336 (2013).

  31. 31.

    et al. Magnetic proximity effect in YBa2Cu3O7–La2/3Ca1/3MnO3 and YBa2Cu3O7–LaMnO3+δ superlattices. Phys. Rev. Lett. 108, 197201 (2012).

  32. 32.

    et al. Long-range transfer of electron–phonon coupling in oxide superlattices. Nature Mater. 11, 675–681 (2012).

  33. 33.

    et al. Thermoelectric properties of YBa2Cu3O6+δ–La2/3Ca1/3MnO3 superlattices. Appl. Phys. Lett. 101, 131603 (2012).

  34. 34.

    , , & Resonant elastic soft X-ray scattering. Rep. Prog. Phys. 76, 056502 (2013).

  35. 35.

    et al. Evaluation of CuO2 plane hole doping in YBa2Cu3O6+x single crystals. Phys. Rev. B 73, 180505 (2006).

Download references

Acknowledgements

We acknowledge fruitful discussions with V. Hinkov, V. Zabolotnyy, A. Charnukha, G. Sawatzky and C. Bernhard. This work was partly funded by the Deutsche Forschungsgemeinschaft within the framework of the SFB/TRR 80.

Author information

Author notes

    • A. Frano
    • , S. Blanco-Canosa
    •  & M. Le Tacon

    Present addresses: Materials Sciences Division and Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA (A.F.); CIC nanoGUNE, 20018 Donostia-San Sebastian, Basque Country, Spain (S.B.-C.); Institut für Festkörperphysik, Karlsruher Institut für Technologie, Postfach 3640, D-76021 Karlsruhe, Germany (M.L.T.).

Affiliations

  1. Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

    • A. Frano
    • , S. Blanco-Canosa
    • , Y. Lu
    • , M. Wu
    • , M. Bluschke
    • , M. Minola
    • , G. Christiani
    • , H. U. Habermeier
    • , G. Logvenov
    • , Y. Wang
    • , P. A. van Aken
    • , E. Benckiser
    • , M. Le Tacon
    •  & B. Keimer
  2. Helmholtz-Zentrum Berlin für Materialien und Energie, Wilhelm-Conrad-Röntgen-Campus BESSY II, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany

    • A. Frano
    • , E. Schierle
    • , M. Bluschke
    •  & E. Weschke

Authors

  1. Search for A. Frano in:

  2. Search for S. Blanco-Canosa in:

  3. Search for E. Schierle in:

  4. Search for Y. Lu in:

  5. Search for M. Wu in:

  6. Search for M. Bluschke in:

  7. Search for M. Minola in:

  8. Search for G. Christiani in:

  9. Search for H. U. Habermeier in:

  10. Search for G. Logvenov in:

  11. Search for Y. Wang in:

  12. Search for P. A. van Aken in:

  13. Search for E. Benckiser in:

  14. Search for E. Weschke in:

  15. Search for M. Le Tacon in:

  16. Search for B. Keimer in:

Contributions

G.C., H.U.H. and G.L. synthesized the thin-film and superlattice samples. A.F., S.B.-C., E.S., Y.L., M.W., M.B. and M.M. performed the sample characterization and the X-ray scattering experiments. A.F., M.B. and M.L.T. analysed the X-ray data. Y.W. and P.A.v.A. performed the TEM experiments. A.F. and B.K. wrote the manuscript, with contributions from all coauthors. E.B., E.W., M.L.T. and B.K. directed the project.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to B. Keimer.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4682