Abstract
The past five years have seen significant cost reductions in photovoltaics and a correspondingly strong increase in uptake, with photovoltaics now positioned to provide one of the lowest-cost options for future electricity generation. What is becoming clear as the industry develops is that area-related costs, such as costs of encapsulation and field-installation, are increasingly important components of the total costs of photovoltaic electricity generation, with this trend expected to continue. Improved energy-conversion efficiency directly reduces such costs, with increased manufacturing volume likely to drive down the additional costs associated with implementing higher efficiencies. This suggests the industry will evolve beyond the standard single-junction solar cells that currently dominate commercial production, where energy-conversion efficiencies are fundamentally constrained by Shockley–Queisser limits to practical values below 30%. This Review assesses the overall prospects for a range of approaches that can potentially exceed these limits, based on ultimate efficiency prospects, material requirements and developmental outlook.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Chapin, D. M., Fuller, C. S. & Pearson, G. L. A new silicon p–n junction photocell for converting solar radiation into electrical power. J. Appl. Phys. 25, 676–677 (1954).
Prince, M. B. Silicon solar energy converters. J. Appl. Phys. 26, 534–540 (1955).
Loferski, J. J. Theoretical considerations governing the choice of the optimum semiconductor for photovoltaic solar energy conversion. J Appl. Phys. 27, 777–784 (1956).
Shockley, W. The theory of p–n junctions in semiconductors and p–n junction transistors. Bell Syst. Tech. J. 28, 435–489 (1949).
Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).
Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency tables (version 47). Prog. Photovoltaics 24, 3–11 (2016).
Green, M. A. Radiative efficiency of state-of-the-art photovoltaic cells. Prog. Photovoltaics 20, 472–476 (2012).
Green, M. A. Limits on the open circuit voltage and efficiency of silicon solar cells imposed by intrinsic Auger processes. IEEE Trans. Electron. Dev. ED-31, 671–678 (1984).
Richter, A., Hermle, M. & Glunz, W. Reassessment of the limiting efficiency for crystalline silicon solar cells . IEEE J. Photovol. 3, 1184–1191 (2013).
Mattheis, J., Werner, J. H. & Rau, U. Finite mobility effects on the radiative efficiency limit of pn-junction solar cells. Phys. Rev. B 77, 085203 (2008).
Green, M. A. Limiting photovoltaic efficiency under new ASTM G173 based reference spectra. Prog. Photovoltaics 20, 954–959 (2012).
Green, M. A. Third Generation Photovoltaics: Advanced Solar Energy Conversion (Springer, 2003).
Ross, R. T. Some thermodynamics of photochemical systems. J. Chem. Phys. 46, 4590–4593 (1967).
Wurfel, P. The chemical potential of radiation. J. Phys. C 15, 3967–3985 (1982).
Green, M. A. Analytical treatment of Trivich–Flinn and Shockley–Queisser photovoltaic efficiency limits using polylogarithms. Prog. Photovoltaics 20, 127–134 (2012).
Rau, U. Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).
Smestad, G., Ries, H., Winston, R. & Yablonovitch, E. The thermodynamic limits of light concentrators. Sol. Energ. Mater. 21, 99–111 (1990).
Carroll, J. J. Global transmissivity and diffuse fraction of solar radiation for clear and cloudy skies as measured and as predicted by bulk transmissivity models. Sol. Energy 35, 105–118 (1985).
Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface ASTM G173–03(2012) (ASTM International, 2012).
Campbell, P. & Green, M. A. The limiting efficiency of silicon solar cells under concentrated sunlight. IEEE Trans. Electron. Dev. ED–33, 234–239 (1986).
Araújo, G. L. & Martí, A. Absolute limiting efficiencies for photovoltaic energy conversion. Sol. Energ. Mater. Sol. C. 33, 213–240 (1994).
Cornaro, C. & Andreotti, A. Influence of average photon energy index on solar irradiance characteristics and outdoor performance of photovoltaic modules. Prog. Photovoltaics 21, 996–1003 (2013).
Hamam, R. E., Celanovic, I. & Soljačić, M. Angular photonic band gap. Phys. Rev. A 83, 035806 (2011).
Kosten, E. D., Atwater, J. H., Parsons, J., Polman, A. & Atwater, H. A. Highly efficient GaAs solar cells by limiting light emission angle. Light Sci. Appl. 2, e45 (2013).
Höhn, O., Kraus, T., Bauhuis, G., Schwarz, U. T. & Bläsi, B. Maximal power output by solar cells with angular confinement. Opt. Express 22, A715–A722 (2014).
Chieng, C. & Green, M. A. Computer simulation of enhanced output from bifacial photovoltaic modules. Prog. Photovoltaics 1, 293–299 (1993).
Duran, C., Deuser, H., Harney, R. & Buck, T. Approaches to an improved IV and QE characterization of bifacial silicon solar cells and the prediction of their module performance. Energy Procedia 8, 88–93 (2011).
Skoplaki, E. & Palyvos, J. A. Operating temperature of photovoltaic modules: A survey of pertinent correlations. Renew. Energ. 34, 23–29 (2009).
Dupré, O., Vaillon, R. & Green, M. A. Physics of the temperature coefficients of solar cells. Sol. Energ. Mater. Sol. C. 140, 92–100 (2015).
Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).
Gentle, A. R. & Smith, G. B. A subambient open roof surface under the mid-summer sun. Adv. Sci. 2, 1500119 (2015).
Zhu, L., Raman, A., Wang, K. X., Anoma, M. A. & Fan, S. Radiative cooling of solar cells. Optica 1, 32–38 (2014).
Rubin, M. Optical properties of soda lime silica glasses. Sol. Energ. Mater. 12, 275–288 (1985).
Zhao, J., Wang, A., Campbell, P. & Green, M. A. 22.7% efficient silicon photovoltaic modules with textured front surface. IEEE Trans. Electron. Dev. 46, 1495–1497 (1999).
Jackson, E. D. Areas for improvement of the semiconductor solar energy converter. Trans. Conf. on the Use of Solar Energy 5, 122–126 (1958).
Green, M. A. et al. 40% efficient sunlight to electricity conversion. Prog. Photovoltaics 23, 685–691 (2015).
De Vos, A. Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D 13, 839–846 (1980).
Henry, C. H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494–4500 (1980).
Marti, A & Araujo, G. L. Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol. Energ. Mater. Sol. C. 43, 203–222 (1996).
Chiu, P. T. et al. 35.8% space and 38.8% terrestrial 5J direct bonded cells. Proc. 40th IEEE Photovoltaic Specialist Conf. 11–13 (2014).
Kayes, B. M., Zhang, L., Twist, R., Ding, I. K. & Higashi, G. S. Flexible thin-film tandem solar cells with >30% efficiency. IEEE J. Photovoltaics 4, 729–733 (2014).
Takamoto, T. Application of InGaP/GaAs/InGaAs triple junction solar cells to space use and concentrator photovoltaic. 40th IEEE Photovoltaic Specialists Conf. 1–5 (2014).
Sai, H. et al. Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%. Appl. Phys. Lett . 106, 213902 (2014).
Matsui, T. et al. Development of highly stable and efficient amorphous silicon based solar cells. Proc. 28th European Photovoltaic Solar Energy Conf. 2213–2217 (2013).
Sai, H. et al. High-efficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition. Jap. J. Appl. Phys. 54, 8S1 (2015).
New world record for solar cell efficiency at 46% French-German cooperation confirms competitive advantage of European photovoltaic industry Fraunhofer Institute for Solar Energy Systems (1 December 2014); http://go.nature.com/2bnQbeA
Arvizu, D. E. Innovation: Enabling a Sustainable Energy Future (NREL, 2014); http://go.nature.com/2blCoSA
Green, M. A. Commercial progress and challenges for photovoltaics. Nat. Energy 1, 15015 (2016).
Snaith, H. From nanostructured to thin-film perovskite solar cells. 42nd IEEE Photovoltaic Specialists Conf. 14–19 (2015).
Albrecht, S. et al. Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energ. Environ. Sci. 9, 81–88 (2016).
Wolf, M. Limitations and possibilities for improvement of photovoltaic solar energy converters. Proc. IRE 48, 1246–1263 (1960).
Guttler, G. & Queisser, H. J. Impurity photovoltaic effect in silicon. Energ. Convers. 10, 51–55 (1970).
Barnham, K. & Duggan, G. A new approach to high-efficiency multi-band-gap solar cells. J. Appl. Phys. 67, 3490–3493 (1990).
Luque, A. & Marti, A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997).
Brown, A. S. & Green, M. A. Intermediate band solar cell with many bands: Ideal performance. J. Appl. Phys. 94, 6150–6158 (2003).
Luque, A. Thermodynamic consistency of sub-bandgap absorbing solar cell proposals . IEEE Trans. Electron. Dev. 48, 2118–2124 (2001).
Ekins-Daukes, N. J. et al. High efficiency quantum well solar cells. 24th Workshop on Quantum Solar Energy Conversion (2012).
Brown, A. S. & Green, M. A. Impurity photovoltaic effect: Fundamental energy conversion efficiency limits. J. Appl. Phys. 92, 1329–1336 (2002).
Brown, A. S. & Green, M. A. Impurity photovoltaic effect with defect relaxation: Implications for low band gap semiconductors such as silicon. J. Appl. Phys. 96, 2603–2609 (2004).
Ramiro, I. & Marti, A. Review of experimental results related to the operation of intermediate band solar cells. IEEE J. Photovolt. 4, 736–748 (2014).
Weber, W. H. & Lambe, J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 15, 2299–2300 (1976).
Goetzberger, A. & Greubel, W. Solar energy conversion with fluorescent concentrators. Appl. Phys. 14, 123–129 (1977).
Rau, U., Einsele, F. & Glaeser, C. Efficiency limits of photovoltaic fluorescent collectors. Appl. Phys. Lett. 87, 171101 (2005).
Richards, B. S., Shalav, A. & Corkish, R. P. A low escape-cone-loss luminescent solar concentrator. 19th Eur. Photovolt. Sol. Energ. Conf. (2004).
Slooff, L. H. et al. A luminescent solar concentrator with 7.1% power conversion efficiency. Phys. Stat. Sol. 2, 257–259 (2008).
Debije, M. Better luminescent solar panels in prospect. Nature 519, 298–299 (2015).
Trupke, T., Green, M. A. & Würfel, P. Improving solar cell efficiencies by the up-conversion of sub-band-gap light. J. Appl. Phys. 92, 4117–4122 (2002).
Trupke, T., Shalav, A., Richards, B. S., Wuerfel, P. & Green, M. A. Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol. Energ. Mater. Sol. C. 90, 3327–3338 (2006).
Trupke, T. Green, M. A. & Würfel, P. Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92, 1668–1674 (2002).
Richards, B. S. Luminescent layers for enhanced silicon solar cell performance: Down-conversion. Sol. Energ. Mater. Sol. C. 90, 1189–1207 (2006).
Zhang, J. et al. Efficient quantum cutting in Tb3+/Yb3+ codoped a-NaYF4 single crystals grown by Bridgman method using KF flux for solar photovoltaic. IEEE J. Quant. Electron. 51, 7000206 (2015).
Wilkinson, F. J., Farmer, A. J. D. & Geist, J. The near ultraviolet yield of silicon. J. Appl. Phys. 54, 1172–1174 (1983).
Deb, S. & Saha, H. Secondary ionisation and its possible bearing on the performance of a solar cell. Solid State Electron. 15, 1389–1391 (1972).
Werner, J. H., Brendel, R. & Queisser, H. J. Radiative efficiency limit of terrestrial solar cells. Appl. Phys. Lett. 67, 1028–1030 (1995).
Beard, M., Luther, J. M., Semonin, O. & Nozik, A. J. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Accounts Chem. Res. 46, 1252–1260 (2013).
Davis, N. J. L. K. et al. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%. Nat. Commun. 6, 8259 (2015).
Hanna, M. C., Beard, M. C. & Nozik, A. J. Effect of solar concentration on the thermodynamic power conversion efficiency of quantum dot solar cells. J. Phys. Chem. Lett. 3, 2857–2862 (2012).
Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).
Perlin, J. Let It Shine: The 6,000-Year Story of Solar Energy (New World Library, 2013).
Des Vos, A. Endoreversible thermodynamics of solar energy conversion (Oxford Univ. Press, 1992).
Vining, C. B. An inconvenient truth about thermoelectrics. Nat. Mater. 8, 83–85 (2009).
Shakouri, A. Recent developments in semiconductor thermoelectric physics and materials. Annu. Rev. Mater. Res. 41, 399–431 (2011).
Stirling Energy Systems set new world record for solar-to-grid conversion efficiency. Sandia National Laboratories (12 February 2008); http://go.nature.com/2b2IFAH
Barbee, J. Could this be the world's most efficient solar electricity system? The Guardian (13 May 2015); http://go.nature.com/2aRxMDa
Harder, N.-P. & Würfel, P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond. Sci. Tech. 18, S151–S157 (2003).
Anderson, D. J., Wong, W. A. & Tuttle, K. L. An overview and status of NASA's radioisotope power conversion technology NRA. Am. Inst. Aero. Astro. (2005).
Ferrari, C., Melino, F., Pinelli, M., Spina, P. R. & Venturini, M. Overview and status of thermophotovoltaic systems . Energ. Proc. 45, 160–169 (2014).
Svetovoy, V. B. & Palasantzas, G. Graphene-on-silicon near-field thermophotovoltaic cell. Phys. Rev. Appl. 2, 034006 (2014).
Harder, N. & Green, M. A. Thermophotonics. Semicond. Sci. Tech. 18, S270–278 (2003).
Manor, A., Martin, L. L. & Rotschild, C. Conservation of photon rate in endothermic photoluminescence and its transition to thermal emission. Optica 2, 585–588 (2015).
Habedank, O. D. Analysis of Topaz II and space-R space nuclear power plants using a modified thermionic model MSc Thesis, Air Univ. (1993).
Yotter, R. A. A review of photodetectors for sensing light-emitting reporters in biological systems. IEEE Sens. J. 3, 288–303 (2003).
Schwede, J. W. et al. Photon-enhanced thermionic emission for solar concentrator systems. Nat. Mater. 9, 762–767 (2010).
Ross, R. T. & Nozik, A. J. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. 53, 3813–3818 (1982).
Luque, A. & Marti, A. Electron-phonon energy transfer in hot-carrier solar cells. Sol. Energ. Mater. Sol. C. 94, 287–296 (2010).
Conibeer, G. et al. Hot carrier solar cell absorber prerequisites and candidate material systems. Sol. Energ. Mater. Sol. C. 135, 124–129 (2015).
Wurfel, P. Solar energy conversion with hot electrons from impact ionization. Sol. Energ. Mater. Sol. C. 46, 43–52 (1997).
Limpert, S., Bremner, S. & Linke, H. Reversible electron–hole separation in a hot carrier solar cell. New J. Phys. 17, 095004 (2015).
Würfel, P. Solar Olympic Conference (2000).
Humphrey, T. E. & Linke, H. Reversible thermoelectric nanomaterials. Phys. Rev. Lett. 94, 096601 (2005).
Takeda, Y. Quantum Dot Solar Cells Ch. 8 (eds Wu, J. & Wang, Z. M.) (Springer Science & Business Media, 2013).
Dimmock, J. A. R., Day, S., Kauer, M., Smith, K. & Heffernan, J. Demonstration of a hot-carrier photovoltaic cell. Prog. Photovolt. 22, 151–160 (2014).
Green, M. Third generation photovoltaics: Recent theoretical progress. 17th Eur. Photovolt. Sol. Energ. Conf. (2001).
Green, M. A. Time-asymmetric photovoltaics. Nano Lett. 12, 5985–5988 (2012).
Polman, A. & Atwater, A. Photonic design principles for ultrahigh-efficiency photovoltaics. Nat. Mater. 11, 174–177 (2012).
Callahan, D. M., Munday, J. N. & Atwater, H. A. Solar cell light trapping beyond the ray optic limit. Nano Lett. 12, 214–218 (2012).
Green, M. A. Enhanced evanescent mode light trapping in organic solar cells and other low index optoelectronic devices. Prog. Photovolt. Res. Appl. 19, 473–477 (2011).
Nechache, R. et al. Bandgap tuning of multiferroic oxide solar cells. Nat. Photon. 9, 61–67 (2015).
Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014).
Farrell, D. J. et al. Hot-carrier solar cell with optical energy selective contacts. Appl. Phys. Lett. 99, 111102 (2011).
Dimroth, F. High-efficiency solar cells from III–V compound semiconductors. Phys. Status Solidi C 3, 373–379 (2006).
Current and Future Costs of Photovoltaics: Long-term Scenarios for Market Development, System Prices and LCOE of Utility-scale PV Systems (Fraunhofer Institute for Solar Energy Systems, 2015); http://go.nature.com/2aYJCgc
Yoshida, M., Ekins-Daukes, N. J., Farrell, D. J. & Phillips, C. C. Photon ratchet intermediate band solar cells. Appl. Phys. Lett. 100, 263902 (2012).
Christensen, O. Quantum efficiency of the internal photoelectric effect in silicon and germanium. J. Appl. Phys 47, 689–695 (1976).
Huang, H. Ferroelectric photovoltaics. Nat. Photon. 4, 134–135 (2010).
Acknowledgements
The authors acknowledge support from the Australian Government through the Australian Renewable Energy Agency (ARENA). The Australian Government does not accept responsibility for any information or advice contained herein.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Green, M., Bremner, S. Energy conversion approaches and materials for high-efficiency photovoltaics. Nature Mater 16, 23–34 (2017). https://doi.org/10.1038/nmat4676
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat4676
This article is cited by
-
Mechanical, Optoelectronic, and Thermoelectric Performance of Li-based Double Perovskites Li2CuSbZ6 (Z = Cl, Br, I): First-Principles Calculations
Journal of Inorganic and Organometallic Polymers and Materials (2024)
-
The use of 1D carbon nanotube interacting with caffeine molecules for applications in solar cells: structure optimisation, Raman analysis and optoelectronic properties
Discover Materials (2024)
-
Resonant perovskite solar cells with extended band edge
Nature Communications (2023)
-
Energy conversion and storage via photoinduced polarization change in non-ferroelectric molecular [CoGa] crystals
Nature Communications (2023)
-
High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf
Nature Communications (2023)