Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pursuing prosthetic electronic skin

Abstract

Skin plays an important role in mediating our interactions with the world. Recreating the properties of skin using electronic devices could have profound implications for prosthetics and medicine. The pursuit of artificial skin has inspired innovations in materials to imitate skin's unique characteristics, including mechanical durability and stretchability, biodegradability, and the ability to measure a diversity of complex sensations over large areas. New materials and fabrication strategies are being developed to make mechanically compliant and multifunctional skin-like electronics, and improve brain/machine interfaces that enable transmission of the skin's signals into the body. This Review will cover materials and devices designed for mimicking the skin's ability to sense and generate biomimetic signals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Skin receptors and transduction process.
Figure 2: Strategies for imparting stretchability to electronic devices.
Figure 3: Devices for transducing sensory stimuli in skin.
Figure 4: Readout electronics design that may be used for collecting and converting biomimetic data.
Figure 5: Sensor and circuit designs for signal readout and addressing.
Figure 6: Emerging technologies with potential for interfacing nervous systems with information from prosthetic electronic skin.

References

  1. 1

    Nghiem, B. T. et al. Providing a sense of touch to prosthetic hands. Plast. Reconstr. Surg. 135, 1652–1663 (2015).

    CAS  Google Scholar 

  2. 2

    Antfolk, C. et al. Sensory feedback in upper limb prosthetics. Exp. Rev. Med. Dev. 10, 45–54 (2013).

    CAS  Google Scholar 

  3. 3

    Marasco, P. D., Kim, K., Colgate, J. E., Peshkin, M. A. & Kuiken, T. A. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 134, 747–758 (2011).

    Google Scholar 

  4. 4

    Flor, H., Denke, C., Schaefer, M. & Grusser, S. Effect of sensory discrimination training on cortical reorganization and phantom limb pain. Lancet 357, 1763–1764 (2001).

    CAS  Google Scholar 

  5. 5

    Saal, H. P. & Bensmaia, S. J. Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia 79, 344–353 (2015).

    Google Scholar 

  6. 6

    Johansson, R. S. & Westling, G. Signals in tactile afferents from the fingers eliciting adaptive motor responses during precision grip. Exp. Brain Res. 66, 141–154 (1987).

    CAS  Google Scholar 

  7. 7

    Wijk, U. & Carlsson, I. Forearm amputees' views of prosthesis use and sensory feedback. J. Hand Ther. 28, 269–278 (2015).

    Google Scholar 

  8. 8

    Biddiss, E., Beaton, D. & Chau, T. Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2, 346–357 (2007).

    Google Scholar 

  9. 9

    Campero, M., Serra, J., Bostock, H. & Ochoa, J. L. Slowly conducting afferents activated by innocuous low temperature in human skin. J. Physiol. 535, 855–865 (2001).

    CAS  Google Scholar 

  10. 10

    Campero, M. & Bostock, H. Unmyelinated afferents in humans and their responsiveness to low temperature. Neurosci. Lett. 470, 188–192 (2010).

    CAS  Google Scholar 

  11. 11

    Hensel, H. Thermoreceptors. Annu. Rev. Physiol. 36, 233–249 (1974).

    CAS  Google Scholar 

  12. 12

    Dahiya, R. S., Metta, G., Valle, M. & Sandini, G. Tactile sensing: from humans to humanoids. IEEE Trans. Robotics 26, 1–20 (2010).

    Google Scholar 

  13. 13

    Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Rev. Neurosci. 10, 345–359 (2009).

    CAS  Google Scholar 

  14. 14

    Abraira, V. E. & Ginty, D. D. The sensory neurons of touch. Neuron 79, 618–639 (2013).

    CAS  Google Scholar 

  15. 15

    Weber, A. I. et al. Spatial and temporal codes mediate the tactile perception of natural textures. Proc. Natl Acad. Sci. USA 110, 17107–17112 (2013).

    CAS  Google Scholar 

  16. 16

    Jenmalm, P., Birznieks, I., Goodwin, A. W. & Johansson, R. S. Influence of object shape on responses of human tactile afferents under conditions characteristic of manipulation. Eur. J. Neurosci. 18, 164–176 (2003).

    Google Scholar 

  17. 17

    Scheibert, J., Leurent, S., Prevost, A. & Debrégeas, G. The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503–1506 (2009).

    CAS  Google Scholar 

  18. 18

    Johansson, R. S. & Birznieks, I. First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nature Neurosci. 7, 170–177 (2004).

    CAS  Google Scholar 

  19. 19

    Adams, M. J. et al. Finger pad friction and its role in grip and touch. J. R. Soc. Interface 10, 20120467 (2013).

    Google Scholar 

  20. 20

    Johansson, R. S. & Vallbo, A. B. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. 286, 283–300 (1979).

    CAS  Google Scholar 

  21. 21

    Tiest, W. M. B. Tactual perception of material properties. Vision Res. 50, 2775–2782 (2010).

    Google Scholar 

  22. 22

    Ackerley, R., Olausson, H., Wessberg, J. & McGlone, F. Wetness perception across body sites. Neurosci. Lett. 522, 73–77 (2012).

    CAS  Google Scholar 

  23. 23

    Hammock, M. L., Chortos, A., Tee, B. C. K., Tok, J. B. H. & Bao, Z. 25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

    CAS  Google Scholar 

  24. 24

    Lumelsky, V. J., Shur, M. S. & Wagner, S. Sensitive skin. IEEE Sens. J. 1, 41–51 (2001).

    CAS  Google Scholar 

  25. 25

    Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    CAS  Google Scholar 

  26. 26

    Cabibihan, J. J., Joshi, D., Srinivasa, Y. M., Chan, M. A. & Muruganantham, A. Illusory sense of human touch from a warm and soft artificial hand. IEEE Trans. Neural Syst. Rehab. Eng. 23, 517–527 (2015).

    Google Scholar 

  27. 27

    Khan, S., Lorenzelli, L. & Dahiya, R. S. Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15, 3164–3185 (2015).

    Google Scholar 

  28. 28

    Wong, W. S. & Salleo, A. Flexible Electronics (Springer Science Business Media, 2009).

    Google Scholar 

  29. 29

    Takei, K. et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nature Mater. 9, 821–826 (2010).

    CAS  Google Scholar 

  30. 30

    Kim, K. et al. Polymer-based flexible tactile sensor up to 32 × 32 arrays integrated with interconnection terminals. Sens. Actuat. A 156, 284–291 (2009).

    CAS  Google Scholar 

  31. 31

    Chen, H., Cao, Y., Zhang, J. & Zhou, C. Large-scale complementary macroelectronics using hybrid integration of carbon nanotubes and IGZO thin-film transistors. Nature Commun. 5, 4097 (2014).

    CAS  Google Scholar 

  32. 32

    Yokota, T. et al. Sheet-type flexible organic active matrix amplifier system using pseudo-CMOS circuits with floating-gate structure. IEEE Trans. Electron Dev. 59, 3434–3441 (2012).

    Google Scholar 

  33. 33

    Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    CAS  Google Scholar 

  34. 34

    Edwards, C. & Marks, R. Evaluation of biomechanical properties of human skin. Clin. Dermatol. 13, 375–380 (1995).

    CAS  Google Scholar 

  35. 35

    Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotech. 6, 296–301 (2011).

    CAS  Google Scholar 

  36. 36

    Harris, K. D., Elias, A. L. & Chung, H.-J. Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J. Mater. Sci. 51, 2771–2805 (2015).

    Google Scholar 

  37. 37

    Kim, D.-H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    CAS  Google Scholar 

  38. 38

    Schwartz, G. et al. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nature Commun. 4, 1859 (2013).

    Google Scholar 

  39. 39

    Kim, D.-H. et al. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl Acad. Sci. USA 105, 18675–18680 (2008).

    CAS  Google Scholar 

  40. 40

    Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    CAS  Google Scholar 

  41. 41

    Benight, S. J., Wang, C., Tok, J. B. H. & Bao, Z. Stretchable and self-healing polymers and devices for electronic skin. Prog. Polym. Sci. 38, 1961–1977 (2013).

    CAS  Google Scholar 

  42. 42

    O'Connor, T. F., Rajan, K. M., Printz, A. D. & Lipomi, D. J. Toward organic electronics with properties inspired by biological tissue. J. Mater. Chem. B 3, 4947–4952 (2015).

    CAS  Google Scholar 

  43. 43

    Chun, K.-Y. et al. Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nature Nanotech. 5, 853–857 (2010).

    CAS  Google Scholar 

  44. 44

    Lipomi, D. J. et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotech. 6, 788–792 (2011).

    CAS  Google Scholar 

  45. 45

    Chortos, A. et al. Mechanically durable and highly stretchable transistors employing carbon nanotube semiconductor and electrodes. Adv. Mater. 28, 4441–4448 (2016).

    CAS  Google Scholar 

  46. 46

    Yun, S. et al. Compliant silver nanowire–polymer composite electrodes for bistable large strain actuation. Adv. Mater. 24, 1321–1327 (2012).

    CAS  Google Scholar 

  47. 47

    Savagatrup, S., Printz, A. D., O'Connor, T., Zaretski, A. V. & Lipomi, D. J. Molecularly stretchable electronics. Chem. Mater. 26, 3028–3041 (2014).

    CAS  Google Scholar 

  48. 48

    Lipomi, D. J. et al. Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates. Chem. Mater. 24, 373–382 (2012).

    CAS  Google Scholar 

  49. 49

    Trung, T. Q., Ramasundaram, S., Hwang, B.-U. & Lee, N.-E. An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2015).

    Google Scholar 

  50. 50

    Park, S. et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv. Mater. 26, 7324–7332 (2014).

    CAS  Google Scholar 

  51. 51

    Choong, C.-L. et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv. Mater. 26, 3451–3458 (2014).

    CAS  Google Scholar 

  52. 52

    Hu, W., Niu, X., Zhao, R. & Pei, Q. Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl. Phys. Lett. 102, 083303 (2013).

    Google Scholar 

  53. 53

    Shin, M. et al. Highly stretchable polymer transistors consisting entirely of stretchable device components. Adv. Mater. 26, 3706–3711 (2014).

    CAS  Google Scholar 

  54. 54

    Sekiguchi, A. et al. Robust and soft elastomeric electronics tolerant to our daily lives. Nano Lett. 15, 5716–5723 (2015).

    CAS  Google Scholar 

  55. 55

    de Boissieu, F. et al. Tactile texture recognition with a 3-axial force MEMS integrated artificial finger. In Proc. Robotics: Science and Systems 49–56 (MIT Press, 2009).

    Google Scholar 

  56. 56

    Jang, K.-I. et al. Soft network composite materials with deterministic and bio-inspired designs. Nature Commun. 6, 6566 (2015).

    CAS  Google Scholar 

  57. 57

    Dykes, R. W. Coding of steady and transient temperatures by cutaneous 'cold' fibers serving the hand of monkeys. Brain Res. 98, 485–500 (1975).

    CAS  Google Scholar 

  58. 58

    Webb, R. C. et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nature Mater. 12, 938–944 (2013).

    CAS  Google Scholar 

  59. 59

    Someya, T. et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl Acad. Sci. USA 102, 12321–12325 (2005).

    CAS  Google Scholar 

  60. 60

    Yokota, T. et al. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc. Natl Acad. Sci. USA 112, 14533–14538 (2015).

    CAS  Google Scholar 

  61. 61

    Jeon, J., Lee, H.-B.-R. & Bao, Z. Flexible wireless temperature sensors based on Ni microparticle-filled binary polymer composites. Adv. Mater. 25, 850–855 (2013).

    CAS  Google Scholar 

  62. 62

    Edin, B. B., Essick, G. K., Trulsson, M. & Olsson, K. A. Receptor encoding of moving tactile stimuli in humans. I. Temporal pattern of discharge of individual low-threshold mechanoreceptors. J. Neurosci. 15, 830–847 (1995).

    CAS  Google Scholar 

  63. 63

    Ge, W. & Khalsa, P. S. Encoding of compressive stress during indentation by slowly adapting type I mechanoreceptors in rat hairy skin. J. Neurophysiol. 87, 1686–1693 (2002).

    Google Scholar 

  64. 64

    Burgess, P. R. et al. The neural signal for skin indentation depth. I. Changing indentations. J. Neurosci. 3, 1572–1585 (1983).

    CAS  Google Scholar 

  65. 65

    Mannsfeld, S. C. B. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nature Mater. 9, 859–864 (2010).

    CAS  Google Scholar 

  66. 66

    Zang, Y. et al. Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nature Commun. 6, 6269 (2015).

    CAS  Google Scholar 

  67. 67

    Tee, B. C. K., Wang, C., Allen, R. & Bao, Z. An electrically and mechanically self-healing composite witih pressure- and flexion-sensitive properties for electronic skin applications. Nature Nanotech. 7, 825–832 (2012).

    CAS  Google Scholar 

  68. 68

    Pan, L. et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Commun. 5, 3002 (2014).

    Google Scholar 

  69. 69

    Lee, S. et al. A transparent bending-insensitive pressure sensor. Nature Nanotech. 11, 472–478 (2016).

    CAS  Google Scholar 

  70. 70

    Boutry, C. M. et al. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv. Mater. 27, 6954–6961 (2015).

    CAS  Google Scholar 

  71. 71

    Yeom, C. et al. Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes. Adv. Mater. 27, 1561–1566 (2015).

    CAS  Google Scholar 

  72. 72

    Chossat, J.-B., Park, Y.-L. & Wood, R. J. A soft strain sensor based on ionic and metal liquids. IEEE Sens. J. 13, 3405–3414 (2013).

    CAS  Google Scholar 

  73. 73

    Kanda, Y. Piezoresistance effect of silicon. Sens. Actuat. A 28, 83–91 (1991).

    CAS  Google Scholar 

  74. 74

    Hu, N., Karube, Y., Yan, C., Masuda, Z. & Fukunaga, H. Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater. 56, 2929–2936 (2008).

    CAS  Google Scholar 

  75. 75

    Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nature Commun. 5, 5747 (2014).

    CAS  Google Scholar 

  76. 76

    Park, Y.-L., Majidi, C., Kramer, R., Bérard, P. & Wood, R. J. Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20, 125029 (2010).

    Google Scholar 

  77. 77

    Broadhurst, M. G., Davis, G. T. & McKinney, J. E. Piezoelectricity and pyroelectricity in polyvinylidene fluoride — a model. J. Appl. Phys. 49, 4992–4997 (1978).

    CAS  Google Scholar 

  78. 78

    Wu, W., Wen, X. & Wang, Z. L. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 340, 952–957 (2013).

    CAS  Google Scholar 

  79. 79

    Tien, N. T. et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv. Mater. 26, 796–804 (2014).

    Google Scholar 

  80. 80

    Wang, Z. L., Chen, J. & Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 8, 2250–2282 (2015).

    CAS  Google Scholar 

  81. 81

    Persano, L. et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nature Commun. 4, 1633 (2013).

    Google Scholar 

  82. 82

    Qi, Y. et al. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons. Nano Lett. 11, 1331–1336 (2011).

    CAS  Google Scholar 

  83. 83

    Park, J., Kim, M., Lee, Y., Lee, H. S. & Ko, H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1, e1500661 (2015).

    Google Scholar 

  84. 84

    Jung, Y., Lee, D.-G., Park, J., Ko, H. & Lim, H. Piezoresistive tactile sensor discriminating multidirectional forces. Sensors 15, 25463–25473 (2015).

    Google Scholar 

  85. 85

    Aoyagi, S., Tanaka, T. & Minami, M. Recognition of contact state of four layers arrayed type tactile sensor by using neural network. In IEEE Int. Conf. Information Acquisition 393–397 (IEEE, 2006).

    Google Scholar 

  86. 86

    Schmitz, A., Maggiali, M., Randazzo, M., Natale, L. & Metta, G. A prototype fingertip with high spatial resolution pressure sensing for the robot iCub. In IEEE-RAS Int. Conf. Humanoid Robots 423–428 (IEEE, 2008).

    Google Scholar 

  87. 87

    Shimojo, M. Spatial filtering characteristic of elastic cover for tactile sensor. In IEEE Int. Conf. Robotics and Automation 287–292 (IEEE, 1994).

    Google Scholar 

  88. 88

    Graz, I. et al. Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin. J. Appl. Phys. 106, 034503 (2009).

    Google Scholar 

  89. 89

    Ho, D. H. et al. Stretchable and multimodal all graphene electronic skin. Adv. Mater. 28, 2601–2608 (2016).

    CAS  Google Scholar 

  90. 90

    Tan, D. W. et al. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6, 257ra138 (2014).

    Google Scholar 

  91. 91

    Viventi, J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2, 24ra22 (2010).

    Google Scholar 

  92. 92

    Tee, B. C.-K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

    CAS  Google Scholar 

  93. 93

    Nag, S., Xiaofeng, J., Thakor, N. & Sharma, D. Flexible charge balanced stimulator with 5.6 fC accuracy for 140 nC injections. IEEE Trans. Biomed. Circuits Syst. 7, 266–275 (2013).

    Google Scholar 

  94. 94

    Chen, L. Y. et al. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nature Commun. 5, 5028 (2014).

    CAS  Google Scholar 

  95. 95

    Xu, S. et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344, 70–74 (2014).

    CAS  Google Scholar 

  96. 96

    Mohammadi, A., Yuce, M. R. & Moheimani, S. O. R. Frequency modulation technique for MEMS resistive sensing. IEEE Sens. J. 12, 2690–2698 (2012).

    Google Scholar 

  97. 97

    Borton, D., Micera, S., Millán, J. d. R. & Courtine, G. Personalized neuroprosthetics. Sci. Transl. Med. 5, 210rv212 (2013).

    Google Scholar 

  98. 98

    Chow, B. Y. & Boyden, E. S. Optogenetics and translational medicine. Sci. Transl. Med. 5, 177ps175 (2013).

    Google Scholar 

  99. 99

    Tufail, Y. et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66, 681–694 (2010).

    CAS  Google Scholar 

  100. 100

    Chen, R., Romero, G., Christiansen, M. G., Mohr, A. & Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 347, 1477–1480 (2015).

    CAS  Google Scholar 

  101. 101

    Tabot, G. A. et al. Restoring the sense of touch with a prosthetic hand through a brain interface. Proc. Natl Acad. Sci. USA 110, 18279–18284 (2013).

    CAS  Google Scholar 

  102. 102

    Bensmaia, S. J. & Miller, L. E. Restoring sensorimotor function through intracortical interfaces: progress and looming challenges. Nature Rev. Neurosci. 15, 313–325 (2014).

    CAS  Google Scholar 

  103. 103

    Li, L. et al. The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147, 1615–1627 (2011).

    CAS  Google Scholar 

  104. 104

    van den Brand, R. et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185 (2012).

    CAS  Google Scholar 

  105. 105

    Kuiken, T. A., Marasco, P. D., Lock, B. A., Harden, R. N. & Dewald, J. P. A. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc. Natl Acad. Sci. USA 104, 20061–20066 (2007).

    CAS  Google Scholar 

  106. 106

    Hassler, C., Boretius, T. & Stieglitz, T. Polymers for neural implants. J. Polym. Sci. B: Polym. Phys. 49, 18–33 (2011).

    CAS  Google Scholar 

  107. 107

    Tyler, D. J. & Durand, D. M. Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans. Neural Syst. Rehab. Eng. 10, 294–303 (2002).

    Google Scholar 

  108. 108

    Raspopovic, S. et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222ra219 (2014).

    Google Scholar 

  109. 109

    Oddo, C. M. et al. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. eLife 5, e09148 (2016).

    Google Scholar 

  110. 110

    Clark, G. A. et al. Using multiple high-count electrode arrays in human median and ulnar nerves to restore sensorimotor function after previous transradial amputation of the hand. In Conf. Proc. IEEE Eng. Med. Biol. Soc. 1977–1980 (IEEE, 2014).

    Google Scholar 

  111. 111

    Spira, M. E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nature Nanotech. 8, 83–94 (2013).

    CAS  Google Scholar 

  112. 112

    Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nature Nanotech. 7, 180–184 (2012).

    CAS  Google Scholar 

  113. 113

    Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64 (2008).

    CAS  Google Scholar 

  114. 114

    O'Connor, D. H. et al. Neural coding during active somatosensation revealed using illusory touch. Nature Neurosci. 16, 958–965 (2013).

    CAS  Google Scholar 

  115. 115

    May, T. et al. Detection of optogenetic stimulation in somatosensory cortex by non-human primates — towards artificial tactile sensation. PLoS ONE 9, e114529 (2014).

    Google Scholar 

  116. 116

    Ji, Z.-G. et al. Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells. PLoS ONE 7, e32699 (2012).

    CAS  Google Scholar 

  117. 117

    Towne, C., Montgomery, K. L., Iyer, S. M., Deisseroth, K. & Delp, S. L. Optogenetic control of targeted peripheral axons in freely moving animals. PLoS ONE 8, e72691 (2013).

    CAS  Google Scholar 

  118. 118

    Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nature Biotechnol. 33, 1280–1286 (2015).

    CAS  Google Scholar 

  119. 119

    Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    CAS  Google Scholar 

  120. 120

    Kim, T.-i. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    CAS  Google Scholar 

  121. 121

    Liu, J. et al. Syringe-injectable electronics. Nature Nanotech. 10, 629–636 (2015).

    CAS  Google Scholar 

  122. 122

    Ho, J. S. et al. Wireless power transfer to deep-tissue microimplants. Proc. Natl Acad. Sci. USA 111, 7974–7979 (2014).

    CAS  Google Scholar 

  123. 123

    Dahiya, R. S. et al. Tactile sensing chips with POSFET array and integrated interface electronics. IEEE Sens. J. 14, 3448–3457 (2014).

    Google Scholar 

  124. 124

    Kraft, U. et al. Flexible low-voltage organic complementart circuits: finding the optimum combination of semiconductors and monolayer gate dielectrics. Adv. Mater. 27, 207–214 (2015).

    CAS  Google Scholar 

  125. 125

    Lee, W. W., Kukreja, S. L. & Thakor, N. V. A kilohertz kilotaxel tactile sensor array for investigating spatiotemporal features in neuromorphic touch. In IEEE Biomed. Circuits Syst. Conf. 1–4 (IEEE, 2015).

    Google Scholar 

  126. 126

    Liu, S.-C. & Delbruck, T. Neuromorphic sensory systems. Curr. Opin. Neurobiol. 20, 288–295 (2010).

    Google Scholar 

  127. 127

    Fan, F. R. et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett. 12, 3109–3114 (2012).

    CAS  Google Scholar 

  128. 128

    Weber, D. J., Friesen, R. & Miller, L. E. Interfacing the somatosensory system to restore touch and proprioception: essential considerations. J. Motor Behav. 44, 403–418 (2012).

    Google Scholar 

  129. 129

    Lochner, C. M., Khan, Y., Pierre, A. & Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nature Commun. 5, 5745 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from Samsung Electronics, the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Program (grant NIPA-2014-H0201-14-1001) supervised by the National IT Industry Promotion Agency and Air Force Office of Scientific Research (grant no. FA9550-15-1-0106).

Author information

Affiliations

Authors

Contributions

A.C., J.L. and Z.B. co-wrote the paper.

Corresponding author

Correspondence to Zhenan Bao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nature Mater 15, 937–950 (2016). https://doi.org/10.1038/nmat4671

Download citation

Further reading

Search

Quick links