Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Giant Rydberg excitons

Probing quantum chaos

Giant Rydberg excitons reveal signatures of quantum chaotic behaviour in the presence of time-reversal symmetry breaking enforced by the background solid-state lattice, and they provide a new mesoscopic platform for fundamental studies of quantum chaos.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complex level structure of a giant Rydberg exciton in a magnetic field.
Figure 2: Nearest-neighbour level spacing distribution in the regular and chaotic regions, compared with the predictions for the Poissonian ensemble (black), GOE (blue) and GUE (red curve).

References

  1. Gutzwiller, M. C. Chaos in Classical and Quantum Mechanics (Springer, 1990).

    Book  Google Scholar 

  2. Berry, M. V. & Tabor, M. Proc. R. Soc. A 356, 375–394 (1977).

    Article  Google Scholar 

  3. Bohigas, O., Giannoni, M. J. & Schmit, C. Phys. Rev. Lett. 52, 1–4 (1984).

    Article  Google Scholar 

  4. Aßmann, M., Thewes, J., Fröhlich, D. & Bayer, M. Nature Mater. 15, 741–745 (2016).

    Article  Google Scholar 

  5. Dietz, B. & Richter, A. Chaos 25, 097601 (2015).

    Article  CAS  Google Scholar 

  6. Cao, H. & Wiersig, J. Rev. Mod. Phys. 87, 61–111 (2015).

    Article  Google Scholar 

  7. Ponomarenko, L. A. et al. Science 320, 356–358 (2008).

    Article  CAS  Google Scholar 

  8. Milner, V., Hanssen, J. L., Campbell, W. C. & Raizen, M. G. Phys. Rev. Lett. 86, 1514–1517 (2001).

    Article  CAS  Google Scholar 

  9. Gao, T. et al. Nature 526, 554–558 (2015).

    Article  CAS  Google Scholar 

  10. Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Nature 514, 343–347 (2014).

    Article  CAS  Google Scholar 

  11. Wunner, G. et al. Phys. Rev. Lett. 57, 3261–3264 (1986).

    Article  CAS  Google Scholar 

  12. So, P., Anlage, S. M., Ott, E. & Oerter, R. N. Phys. Rev. Lett. 74, 2662–2665 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elena A. Ostrovskaya or Franco Nori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostrovskaya, E., Nori, F. Probing quantum chaos. Nature Mater 15, 702–703 (2016). https://doi.org/10.1038/nmat4670

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4670

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing