Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The road towards polaritonic devices

Abstract

Polaritons are quasiparticles that form in semiconductors when an elementary excitation such as an exciton or a phonon interacts sufficiently strongly with light. In particular, exciton–polaritons have attracted tremendous attention for their unique properties, spanning from an ability to undergo ultra-efficient four-wave mixing to superfluidity in the condensed state. These quasiparticles possess strong intrinsic nonlinearities, while keeping most characteristics of the underlying photons. Here we review the most important features of exciton–polaritons in microcavities, with a particular emphasis on the emerging technological applications, the use of new materials for room-temperature operation, and the possibility of exploiting polaritons for quantum computation and simulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microcavity polaritons.
Figure 2: Schematic representation of bistable behaviour under resonant excitation.
Figure 3: Polariton lasers.
Figure 4: Polariton transistors and gates.
Figure 5: Quantum behaviour of polaritons.

Similar content being viewed by others

References

  1. Hopfield, J. J. & Thomas, D. G. Polariton absorption lines. Phys. Rev. Lett. 15, 22–25 (1965).

    Article  CAS  Google Scholar 

  2. Morris, G. C. & Sceats, M. G. The 4000 Å transition of crystal anthracene. Chem. Phys. 3, 164–179 (1974).

    Article  Google Scholar 

  3. Stevenson, R. M. et al. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities. Phys. Rev. Lett. 85, 3680–3683 (2000).

    Article  CAS  Google Scholar 

  4. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  CAS  Google Scholar 

  5. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  CAS  Google Scholar 

  6. Nitsche, W. H. et al. Algebraic order and the Berezinskii–Kosterlitz–Thouless transition in an exciton–polariton gas. Phys. Rev. B 90, 205430 (2014).

    Article  CAS  Google Scholar 

  7. Daskalakis, K. S., Maier, S. A. & Kéna-Cohen, S. Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett. 115, 035301 (2015).

    Article  CAS  Google Scholar 

  8. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    Article  CAS  Google Scholar 

  9. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nature Phys. 5, 805–810 (2009).

    Article  CAS  Google Scholar 

  10. Lagoudakis, K. et al. Quantized vortices in an exciton–polariton condensate. Nature Phys. 4, 706–710 (2008).

    Article  CAS  Google Scholar 

  11. Sanvitto, D. et al. Persistent currents and quantized vortices in a polariton superfluid. Nature Phys. 6, 527–533 (2010).

    Article  CAS  Google Scholar 

  12. Bellessa, J. et al. Giant Rabi splitting between localized mixed plasmon–exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor. Phys. Rev. B 80, 033303 (2009).

    Article  CAS  Google Scholar 

  13. Lerario, G. et al. Room temperature Bloch surface wave polaritons. Opt. Lett. 39, 2068–2071 (2014).

    Article  Google Scholar 

  14. Symonds, C., Lemaitre, A., Homeyer, E., Plenet, J. C. & Bellessa, J. Emission of Tamm plasmon/exciton polaritons. Appl. Phys. Lett. 95, 151114 (2009).

    Article  CAS  Google Scholar 

  15. Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nature Phys. 10, 803–813 (2014).

    Article  CAS  Google Scholar 

  16. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  Google Scholar 

  17. Keeling, J., Marchetti, F. M., Szymanska, M. H. & Littlewood, P. B. Collective coherence in planar semiconductor microcavities. Semicond. Sci. Technol. 22, R1–R26 (2007).

    Article  CAS  Google Scholar 

  18. Vladimirova, M. et al. Polariton–polariton interaction constants in microcavities. Phys. Rev. B 82, 075301 (2010).

    Article  CAS  Google Scholar 

  19. Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M. T. & Deveaud, B. Polaritonic Feshbach resonance. Nature Phys. 10, 500–504 (2014).

    Article  CAS  Google Scholar 

  20. Mak, K. F., He, K., Shan, J. & Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nature Nanotech. 7, 494–498 (2012).

    Article  CAS  Google Scholar 

  21. Wertz, E. et al. Spontaneous formation and optical manipulation of extended polariton condensates. Nature Phys. 6, 860–864 (2010).

    Article  CAS  Google Scholar 

  22. Steger, M. et al. Long-range ballistic motion and coherent flow of long-lifetime polaritons. Phys. Rev. B 88, 235314 (2013).

    Article  CAS  Google Scholar 

  23. Vishnevsky, D. V. & Laussy, F. Effective attractive polariton–polariton interaction mediated by an exciton reservoir. Phys. Rev. B 90, 035413 (2014).

    Article  CAS  Google Scholar 

  24. Dominici, L. et al. Backjet, shock waves and ring solitons in the quantum pond of a polariton superfluid. Nature Commun. 6, 8993 (2015).

    Article  CAS  Google Scholar 

  25. Baas, A., Karr, J.-P., Romanelli, M., Bramati, A. & Giacobino, E. Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: analogy with the optical parametric oscillator. Phys. Rev. B 70, 161307 (2004).

    Article  CAS  Google Scholar 

  26. Paraïso, T. K., Wouters, M., Léger, Y., Morier-Genoud, F. & Deveaud-Plédran, B. Multistability of a coherent spin ensemble in a semiconductor microcavity. Nature Mater. 9, 655–660 (2010).

    Article  CAS  Google Scholar 

  27. Sich, M. et al. Observation of bright polariton solitons in a semiconductor microcavity. Nature Photon. 6, 50–55 (2011).

    Article  CAS  Google Scholar 

  28. Kéna-Cohen, S. & Forrest, S. R. Room-temperature polariton lasing in an organic single-crystal microcavity. Nature Photon. 4, 371–375 (2010).

    Article  CAS  Google Scholar 

  29. Daskalakis, K. S., Maier, S. A., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nature Mater. 13, 271–278 (2014).

    Article  CAS  Google Scholar 

  30. Christopoulos, S. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    Article  CAS  Google Scholar 

  31. Christmann, G., Butté, R., Feltin, E., Carlin, J.-F. & Grandjean, N. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).

    Article  CAS  Google Scholar 

  32. Guillet, T. et al. Polariton lasing in a hybrid bulk ZnO microcavity. Appl. Phys. Lett. 99, 161104 (2011).

    Article  CAS  Google Scholar 

  33. Das, A. et al. Room temperature ultralow threshold GaN nanowire polariton laser. Phys. Rev. Lett. 107, 066405 (2011).

    Article  CAS  Google Scholar 

  34. Orosz, L. et al. LO-phonon-assisted polariton lasing in a ZnO-based microcavity. Phys. Rev. B 85, 121201 (2012).

    Article  CAS  Google Scholar 

  35. Litinskaya, M., Reineker, P. & Agranovich, V. Fast polariton relaxation in strongly coupled organic microcavities. J. Lumin. 110, 364–372 (2004).

    Article  CAS  Google Scholar 

  36. Mazza, L., Fontanesi, L. & La Rocca, G. C. Organic-based microcavities with vibronic progressions: photoluminescence. Phys. Rev. B 80, 235314 (2009).

    Article  CAS  Google Scholar 

  37. Feist, J. & Garcia-Vidal, F. J. Extraordinary exciton conductance induced by strong coupling. Phys. Rev. Lett. 114, 196402 (2015).

    Article  CAS  Google Scholar 

  38. Lidzey, D. G. et al. Room temperature polariton emission from strongly coupled organic semiconductor microcavities. Phys. Rev. Lett. 82, 3316–3319 (1999).

    Article  CAS  Google Scholar 

  39. Holmes, R. J. & Forrest, S. R. Strong exciton–photon coupling and exciton hybridization in a thermally evaporated polycrystalline film of an organic small molecule. Phys. Rev. Lett. 93, 186404 (2004).

    Article  CAS  Google Scholar 

  40. Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nature Mater. 13, 247–252 (2014).

    Article  CAS  Google Scholar 

  41. Ferrier, L. et al. Interactions in confined polariton condensates. Phys. Rev. Lett. 106, 126401 (2011).

    Article  CAS  Google Scholar 

  42. Rossbach, G. et al. Impact of saturation on the polariton renormalization in III-nitride based planar microcavities. Phys. Rev. B 88, 165312 (2013).

    Article  CAS  Google Scholar 

  43. Litinskaya, M. Exciton polariton kinematic interaction in crystalline organic microcavities. Phys. Rev. B 77, 155325 (2008).

    Article  CAS  Google Scholar 

  44. Kéna-Cohen, S., Maier, S. A. & Bradley, D. D. C. Ultrastrongly coupled exciton–polaritons in metal-clad organic semiconductor microcavities. Adv. Opt. Mater. 1, 827–833 (2013).

    Article  Google Scholar 

  45. Gambino, S. et al. Exploring light–matter interaction phenomena under ultrastrong coupling regime. ACS Photon. 1, 1042–1048 (2014).

    Article  CAS  Google Scholar 

  46. Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012).

    Article  CAS  Google Scholar 

  47. Ciuti, C., Bastard, G. & Carusotto, I. Quantum vacuum properties of the intersubband cavity polariton field. Phys. Rev. B 72, 115303 (2005).

    Article  CAS  Google Scholar 

  48. De Liberato, S. Light–matter decoupling in the deep strong coupling regime: the breakdown of the Purcell effect. Phys. Rev. Lett. 112, 016401 (2014).

    Article  CAS  Google Scholar 

  49. Hutchison, J. A., Schwartz, T., Genet, C., Devaux, E. & Ebbesen, T. W. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. 51, 1592–1596 (2012).

    Article  CAS  Google Scholar 

  50. Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article  CAS  Google Scholar 

  51. Brehier, A., Parashkov, R., Lauret, J. S. & Deleporte, E. Strong exciton–photon coupling in a microcavity containing layered perovskite semiconductors. Appl. Phys. Lett. 89, 171110 (2006).

    Article  CAS  Google Scholar 

  52. Nguyen, H. S. et al. Quantum confinement of zero-dimensional hybrid organic–inorganic polaritons at room temperature. Appl. Phys. Lett. 104, 081103 (2014).

    Article  CAS  Google Scholar 

  53. Agranovich, V. M., Basko, D. M., Rocca, G. C. L. & Bassani, F. Excitons and optical nonlinearities in hybrid organic–inorganic nanostructures. J. Phys. Condens. Matter 10, 9369–9400 (1998).

    Article  CAS  Google Scholar 

  54. Holmes, R. J., Kéna-Cohen, S., Menon, V. M. & Forrest, S. R. Strong coupling and hybridization of Frenkel and Wannier–Mott excitons in an organic–inorganic optical microcavity. Phys. Rev. B 74, 235211 (2006).

    Article  CAS  Google Scholar 

  55. Wenus, J. et al. Hybrid organic–inorganic exciton–polaritons in a strongly coupled microcavity. Phys. Rev. B 74, 235212 (2006).

    Article  CAS  Google Scholar 

  56. Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nature Photon. 9, 30–34 (2015).

    Article  CAS  Google Scholar 

  57. Dufferwiel, S. et al. Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities. Nature Commun. 6, 8579 (2015).

    Article  CAS  Google Scholar 

  58. Imamoglu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: exciton–polariton lasers. Phys. Rev. A 53, 4250–4253 (1996).

    Article  CAS  Google Scholar 

  59. Azzini, S. et al. Ultra-low threshold polariton lasing in photonic crystal cavities. Appl. Phys. Lett. 99, 111106 (2011).

    Article  CAS  Google Scholar 

  60. Bajoni, D. et al. Polariton laser using single micropillar GaAs–GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008).

    Article  CAS  Google Scholar 

  61. Lu, T.-C. et al. Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. Opt. Exp. 20, 5530–5537 (2012).

    Article  CAS  Google Scholar 

  62. Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003).

    Article  CAS  Google Scholar 

  63. Schmutzler, J. et al. Determination of operating parameters for a GaAs-based polariton laser. Appl. Phys. Lett. 102, 081115 (2013).

    Article  CAS  Google Scholar 

  64. Richard, M. et al. Experimental evidence for nonequilibrium Bose condensation of exciton polaritons. Phys. Rev. B 72, 201301 (2005).

    Article  CAS  Google Scholar 

  65. Li, F. et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity. Phys. Rev. Lett. 110, 196406 (2013).

    Article  CAS  Google Scholar 

  66. Kasprzak, J., Solnyshkov, D. D., André, R., Dang, L. S. & Malpuech, G. Formation of an exciton polariton condensate: thermodynamic versus kinetic regimes. Phys. Rev. Lett. 101, 146404 (2008).

    Article  CAS  Google Scholar 

  67. Butté, R. et al. Phase diagram of a polariton laser from cryogenic to room temperature. Phys. Rev. B 80, 233301 (2009).

    Article  CAS  Google Scholar 

  68. Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y. & Arakawa, Y. Photonic crystal nanocavity laser with a single quantum dot gain. Opt. Exp. 17, 15975–15982 (2009).

    Article  CAS  Google Scholar 

  69. Malpuech, G., Kavokin, A., Di Carlo, A. & Baumberg, J. J. Polariton lasing by exciton–electron scattering in semiconductor microcavities. Phys. Rev. B 65, 153310 (2002).

    Article  CAS  Google Scholar 

  70. Perrin, M., Senellart, P., Lemaître, A. & Bloch, J. Polariton relaxation in semiconductor microcavities: efficiency of electron–polariton scattering. Phys. Rev. B 72, 075340 (2005).

    Article  CAS  Google Scholar 

  71. Tischler, J. R., Bradley, M. S., Bulović, V., Song, J. H. & Nurmikko, A. Strong coupling in a microcavity LED. Phys. Rev. Lett. 95, 036401 (2005).

    Article  CAS  Google Scholar 

  72. Khalifa, A. A., Love, A. P. D., Krizhanovskii, D. N., Skolnick, M. S. & Roberts, J. S. Electroluminescence emission from polariton states in GaAs-based semiconductor microcavities. Appl. Phys. Lett. 92, 061107 (2008).

    Article  CAS  Google Scholar 

  73. Tsintzos, S. I., Pelekanos, N. T., Konstantinidis, G., Hatzopoulos, Z. & Savvidis, P. G. A GaAs polariton light-emitting diode operating near room temperature. Nature 453, 372–375 (2008).

    Article  CAS  Google Scholar 

  74. Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

    Article  CAS  Google Scholar 

  75. Bhattacharya, P., Xiao, B., Das, A., Bhowmick, S. & Heo, J. Solid state electrically injected exciton–polariton laser. Phys. Rev. Lett. 110, 206403 (2013).

    Article  CAS  Google Scholar 

  76. Yang, G., MacDougal, M. & Dapkus, P. Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation. Electron. Lett. 31, 886–888 (1995).

    Article  CAS  Google Scholar 

  77. Bhattacharya, P. et al. Room temperature electrically injected polariton laser. Phys. Rev. Lett. 112, 236802 (2014).

    Article  CAS  Google Scholar 

  78. Onishi, T. et al. Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature. IEEE J. Quantum Electron. 48, 1107–1112 (2012).

    Article  CAS  Google Scholar 

  79. Baten, M. Z. et al. GaAs-based high temperature electrically pumped polariton laser. Appl. Phys. Lett. 104, 231119 (2014).

    Article  CAS  Google Scholar 

  80. Ballarini, D. et al. Polariton-induced enhanced emission from an organic dye under the strong coupling regime. Adv. Opt. Mater. 2, 1076–1081 (2014).

    Article  CAS  Google Scholar 

  81. Miller, D. A. B. Are optical transistors the logical next step? Nature Photon. 4, 3–5 (2010).

    Article  CAS  Google Scholar 

  82. Liew, T., Kavokin, A. & Shelykh, I. Optical circuits based on polariton neurons in semiconductor microcavities. Phys. Rev. Lett. 101, 016402 (2008).

    Article  CAS  Google Scholar 

  83. Shelykh, I. A., Johne, R., Solnyshkov, D. D. & Malpuech, G. Optically and electrically controlled polariton spin transistor. Phys. Rev. B 82, 153303 (2010).

    Article  CAS  Google Scholar 

  84. Espinosa-Ortega, T. & Liew, T. C. H. Complete architecture of integrated photonic circuits based on AND and NOT logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B 87, 195305 (2013).

    Article  CAS  Google Scholar 

  85. Amo, A. et al. Exciton–polariton spin switches. Nature Photon. 4, 361–366 (2010).

    Article  CAS  Google Scholar 

  86. Ballarini, D. et al. All-optical polariton transistor. Nature Commun. 4, 1778 (2013).

    Article  CAS  Google Scholar 

  87. De Giorgi, M. et al. Control and ultrafast dynamics of a two-fluid polariton switch. Phys. Rev. Lett. 109, 266407 (2012).

    Article  CAS  Google Scholar 

  88. De Giorgi, M. et al. Relaxation oscillations in the formation of a polariton condensate. Phys. Rev. Lett. 112, 113602 (2014).

    Article  CAS  Google Scholar 

  89. Marsault, F. et al. Realization of an all optical exciton–polariton router. Appl. Phys. Lett. 107, 201115 (2015).

    Article  CAS  Google Scholar 

  90. Nguyen, H. Realization of a double-barrier resonant tunneling diode for cavity polaritons. Phys. Rev. Lett. 110, 236601 (2013).

    Article  CAS  Google Scholar 

  91. Sturm, C. et al. All-optical phase modulation in a cavity-polariton Mach–Zehnder interferometer. Nature Commun. 5, 3278 (2014).

    Article  CAS  Google Scholar 

  92. Gao, T. et al. Polariton condensate transistor switch. Phys. Rev. B 85, 235102 (2012).

    Article  CAS  Google Scholar 

  93. Antón, C. et al. Quantum reflections and shunting of polariton condensate wave trains: implementation of a logic AND gate. Phys. Rev. B 88, 245307 (2013).

    Article  CAS  Google Scholar 

  94. Solnyshkov, D. D., Bleu, O. & Malpuech, G. All optical controlled-NOT gate based on an exciton–polariton circuit. Superlattices Microstruct. 83, 466–475 (2015).

    Article  CAS  Google Scholar 

  95. Walker, P. M. et al. Exciton polaritons in semiconductor waveguides. Appl. Phys. Lett. 102, 012109 (2013).

    Article  CAS  Google Scholar 

  96. Dietrich, C. P. et al. Parametric relaxation in whispering gallery mode exciton–polariton condensates. Phys. Rev. B 91, 041202 (2015).

    Article  CAS  Google Scholar 

  97. Nguyen, H. S. et al. Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons. Phys. Rev. Lett. 114, 036402 (2015).

    Article  CAS  Google Scholar 

  98. Laussy, F. P., Kavokin, A. V. & Shelykh, I. A. Exciton–polariton mediated superconductivity. Phys. Rev. Lett. 104, 106402 (2010).

    Article  CAS  Google Scholar 

  99. Liew, T. C. H. & Savona, V. Multipartite polariton entanglement in semiconductor microcavities. Phys. Rev. A 84, 032301 (2011).

    Article  CAS  Google Scholar 

  100. Pagel, D., Fehske, H., Sperling, J. & Vogel, W. Strongly entangled light from planar microcavities. Phys. Rev. A 86, 052313 (2012).

    Article  CAS  Google Scholar 

  101. Savasta, S., Stefano, O. D., Savona, V. & Langbein, W. Quantum complementarity of microcavity polaritons. Phys. Rev. Lett. 94, 246401 (2005).

    Article  CAS  Google Scholar 

  102. Ardizzone, V. et al. Bunching visibility of optical parametric emission in a semiconductor microcavity. Phys. Rev. B 86, 041301 (2012).

    Article  CAS  Google Scholar 

  103. Boulier, T. et al. Polariton-generated intensity squeezing in semiconductor micropillars. Nature Commun. 5, 3260 (2014).

    Article  CAS  Google Scholar 

  104. Demirchyan, S. S., Chestnov, I. Y., Alodjants, A. P., Glazov, M. M. & Kavokin, A. V. Qubits based on polariton Rabi oscillators. Phys. Rev. Lett. 112, 196403 (2014).

    Article  CAS  Google Scholar 

  105. Quochi, F. et al. Strongly driven semiconductor microcavities: from the polariton doublet to an ac Stark triplet. Phys. Rev. Lett. 80, 4733–4736 (1998).

    Article  CAS  Google Scholar 

  106. O’Brien, J. L., Furusawa, A. & Vuckovic, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  CAS  Google Scholar 

  107. Monroe, C., Meekhof, D. M., King, B. E., Itano, W. M. & Wineland, D. J. Demonstration of a fundamental quantum logic gate. Phys. Rev. Lett. 75, 4714–4717 (1995).

    Article  CAS  Google Scholar 

  108. López Carreño, J. C., Sánchez Muñoz, C., Sanvitto, D., del Valle, E. & Laussy, F. P. Exciting polaritons with quantum light. Phys. Rev. Lett. 115, 196402 (2015).

    Article  CAS  Google Scholar 

  109. Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C., Hartmann, M. J. & Valle, E. d. Two-photon spectra of quantum emitters. New J. Phys. 15, 033036 (2013).

    Article  CAS  Google Scholar 

  110. Silva, B. et al. Measuring photon correlations simultaneously in time and frequency. Preprint at http://arXiv.org/abs/1406.0964 (2015).

  111. Kasprzak, J. et al. Second-order time correlations within a polariton Bose–Einstein condensate in a CdTe microcavity. Phys. Rev. Lett. 100, 067402 (2008).

    Article  CAS  Google Scholar 

  112. Assmann, M. et al. From polariton condensates to highly photonic quantum degenerate states of bosonic matter. Proc. Natl Acad. Sci. USA 108, 1804–1809 (2011).

    Article  Google Scholar 

  113. Adiyatullin, A. F. et al. Temporally resolved second-order photon correlations of exciton–polariton Bose–Einstein condensate formation. Appl. Phys. Lett. 107, 221107 (2015).

    Article  CAS  Google Scholar 

  114. Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).

    Article  CAS  Google Scholar 

  115. Besga, B. et al. Polariton boxes in a tunable fiber cavity. Phys. Rev. Appl. 3, 014008 (2015).

    Article  CAS  Google Scholar 

  116. Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Phys. 4, 859–863 (2008).

    Article  CAS  Google Scholar 

  117. Liew, T. C. H. & Savona, V. Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010).

    Article  CAS  Google Scholar 

  118. Bamba, M., Imamoğlu, A., Carusotto, I. & Ciuti, C. Origin of strong photon antibunching in weakly nonlinear photonic molecules. Phys. Rev. A 83, 021802 (2011).

    Article  CAS  Google Scholar 

  119. Gerace, D. & Savona, V. Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity. Phys. Rev. A 89, 031803 (2014).

    Article  CAS  Google Scholar 

  120. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  CAS  Google Scholar 

  121. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  CAS  Google Scholar 

  122. Karzig, T., Bardyn, C.-E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. X 5, 031001 (2015).

    Google Scholar 

  123. Lai, C. W. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–532 (2007).

    Article  CAS  Google Scholar 

  124. Tanese, D. et al. Fractal energy spectrum of a polariton gas in a Fibonacci quasiperiodic potential. Phys. Rev. Lett. 112, 146404 (2014).

    Article  CAS  Google Scholar 

  125. Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    Article  CAS  Google Scholar 

  126. Bardyn, C.-E., Karzig, T., Refael, G. & Liew, T. C. H. Topological polaritons and excitons in garden-variety systems. Phys. Rev. B 91, 161413 (2015).

    Article  CAS  Google Scholar 

  127. Maragkou, M. 2D semiconductors: one at a time. Nature Mater. 14, 564 (2015).

    Article  CAS  Google Scholar 

  128. Coles, D. M. et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21, 3691–3696 (2011).

    Article  CAS  Google Scholar 

  129. Tanese, D. et al. Polariton condensation in solitonic gap states in a one-dimensional periodic potential. Nature Commun. 4, 1749 (2013).

    Article  CAS  Google Scholar 

  130. Agranovich, V. M., Litinskaia, M. & Lidzey, D. G. Cavity polaritons in microcavities containing disordered organic semiconductors. Phys. Rev. B 67, 085311 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Cancellieri for providing the theoretical S-shape plot in Fig. 2 and R. Butté for helpful discussions. Special thanks to F. P. Laussy for his valuable suggestions. We gratefully acknowledge financial support from the ERC POLAFLOW project and the NSERC Discovery Grant programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniele Sanvitto or Stéphane Kéna-Cohen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanvitto, D., Kéna-Cohen, S. The road towards polaritonic devices. Nature Mater 15, 1061–1073 (2016). https://doi.org/10.1038/nmat4668

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4668

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing